On the asymptotics of some systems of difference equations.(English)Zbl 1233.39001

The article deals with the following (at least highly cumbersome formulated) statement: if the functions $f_i:\;I_i \times \ldots \times I_1 \times I_k \times \ldots \times I_{i+1} \to I_i, \qquad i = 1,\ldots,k,$ ($$I_i$$ are some intervals in $${\mathbb R}$$) are continuous and non-decreasing in all arguments and the sequences $$y_n^{(i)}$$ and $$z_n^{(i)}$$, $$i = 1,\ldots,k$$, satisfy the inequalities $$y_n^{(i)} < z_n^{(i)}$$ $\left.\begin{matrix} y_n^{(1)} &\leq& f_1(y_{n+1}^{(1)},y_n^{(k)},\ldots,y_n^{(3)},y_n^{(2)}) \\ y_n^{(2)} &\leq& f_2(y_{n+1}^{(2)},y_{n+1}^{(1)},y_n^{(k)},\ldots,y_n^{(3)}) \\ \hdotsfor 3 \\ y_n^{(k-1)} &\leq& f_{k-1}(y_{n+1}^{(k-1)},\ldots,y_{n+1}^{(1)},y_n^{(k)})\\ y_n^{(k)} &\leq& f_k(y_{n+1}^{(k)},y_{n+1}^{(k-1)},\ldots,y_{n+1}^{(1)}) \end{matrix}\right\}$
$\left.\begin{matrix} z_n^{(1)} &\geq& f_1(z_{n+1}^{(1)},z_n^{(k)},\ldots,z_n^{(3)},z_n^{(2)}) \\ z_n^{(2)} &\geq& f_2(z_{n+1}^{(2)},z_{n+1}^{(1)},z_n^{(k)},\ldots,z_n^{(3)}) \\ \hdotsfor 3 \\ z_n^{(k-1)} &\geq& f_{k-1}(z_{n+1}^{(k-1)},\ldots,z_{n+1}^{(1)},z_n^{(k)})\\ z_n^{(k)} &\geq& f_k(z_{n+1}^{(k)},z_{n+1}^{(k-1)},\ldots,z_{n+1}^{(1)}) \end{matrix}\right\}$ then the system $\left.\begin{matrix} u_n^{(1)} &=& f_1(u_{n+1}^{(1)},u_n^{(k)},\ldots,u_n^{(3)},u_n^{(2)}) \\ u_n^{(2)} &=& f_2(u_{n+1}^{(2)},u_{n+1}^{(1)},u_n^{(k)},\ldots,u_n^{(3)}) \\ \hdotsfor 3 \\ u_n^{(k-1)} &=& f_{k-1}(u_{n+1}^{(k-1)},\ldots,u_{n+1}^{(1)},u_n^{(k)})\\ u_n^{(k)} &=& f_k(u_{n+1}^{(k)},u_{n+1}^{(k-1)},\ldots,u_{n+1}^{(1)}) \end{matrix}\right\}$ has a solution $$u_n^{(i)}$$ such that $$y_n^{(i)} \leq u_n^{(i)} \leq z_n^{(i)}$$. This result is applied in getting the asymptotics of some particular solutions to the difference equation $x_n = \frac{x_{n-k}}{1 + x_{n-1} \cdots x_{n-k+1}}.$ The cases $$k = 2,3$$ are considered.

MSC:

 39A10 Additive difference equations 41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
Full Text:

References:

 [1] Agarwal R.P., Difference Equations and Inequalities (1992) · Zbl 0925.39001 [2] Berg L., Asymptotische Darstellungen und Entwicklungen (1968) · Zbl 0165.36901 [3] Berg L., Z. Anal. Anwendungen 21 pp 1061– (2002) [4] DOI: 10.1080/10236190310001625280 · Zbl 1056.39003 [5] DOI: 10.1080/10236190701503041 · Zbl 1138.39003 [6] Berg L., J. Difference Equ. Appl. [7] Gibbons C.H., Math. Sci. Res. Hot-Line 4 pp 1– (2000) [8] Gutnik L., Discrete Dyn. Nat. Soc. [9] Iričanin B., Appl. Math. Comput. Appl. Math. Comput. 215 pp 854– (2009) · Zbl 1178.39012 [10] DOI: 10.1016/S0362-546X(01)00578-8 · Zbl 1042.39507 [11] DOI: 10.1016/S0898-1221(01)00184-5 · Zbl 0998.39005 [12] Kulenović M., Dynamics of Second Order Rational Difference Equations (2002) · Zbl 0981.39011 [13] Stević S., Taiwanese J. Math. 6 pp 405– (2002) [14] Stević S., Discrete Dyn. Nat. Soc. [15] DOI: 10.1016/j.aml.2005.05.014 · Zbl 1095.39010 [16] Stević S., Discrete Dyn. Nat. Soc. [17] Stević S., Discrete Dyn. Nat. Soc. [18] DOI: 10.1016/j.aml.2006.03.002 · Zbl 1131.39009 [19] Stević S., Mat. Zametki 84 pp 772– (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.