×

Local variational problems and conservation laws. (English) Zbl 1233.58002

Let \(\pi:\mathbb{Y}\to \mathbb{X}\) be a fibered manifold with \(\dim \mathbb{X}=n\) and \(\dim \mathbb{Y}=n+m\). For \(r\geq0\), let \(J_r\mathbb{Y}\) be the space of \(r\)-jet prolongations of sections of \(\pi\). The natural fiberings \(\pi^r_s:J_r\mathbb{Y}\to J_s\mathbb{Y}\), \(r\geq s\), are affine bundles that induce the natural fibered splitting \[ J_r\mathbb{Y}\times_{J_{r-1}\mathbb{Y}}T^*J_{r-1}\mathbb{Y}=J_r\mathbb{Y}\times_{J_{r-1}\mathbb{Y}}(T^*\mathbb{X}\oplus V^*J_{r-1}\mathbb{Y})\;, \] which in turn induces a decomposition of the exterior differential into horizontal and vertical components, \((\pi^{r+1}_r)^*\circ d=d_H+d_V\). For a projectable vector field \(\Xi\) on \(\mathbb{Y}\), let \(j_r\Xi\) denote its jet prolongation, whose horizontal and vertical components are denoted by \(j_r\Xi_H\) and \(j_r\Xi_V\).
The variational sequence of order \(r\) defined by \(\pi:\mathbb{X}\to \mathbb{Y}\) is an exact soft resolution \((\mathcal{V}_r^*,\mathcal{E}_*)\) of the constant sheaf \(\mathbb{R}_\mathbb{Y}\) over \(\mathbb{Y}\), which is defined by using \(k\)-forms on jet spaces of order \(r\). The cohomology \(H_{VS}^*(\mathbb{Y})\) of the corresponding complex of global sections, \(((\mathcal{V}_r^*)_\mathbb{Y},\mathcal{E}_*)\), is naturally isomorphic to the de Rham cohomology \(H_{dR}^*(\mathbb{Y})\). In this setup, each \(\lambda\in(\mathcal{V}_r^n)_\mathbb{Y}\) is a Lagrangian, \(\mathcal{E}_n(\lambda)\) is an Euler-Lagrange form (\(\mathcal{E}_n\) is the Euler-Lagrange morphism), each \(\eta\in(\mathcal{V}_r^{n+1})_\mathbb{Y}\) is a dynamical form, and \(\widetilde{H}_{d\eta}:=\mathcal{E}_{n+1}(\eta)\) is a Helmholtz form (\(\mathcal{E}_{n+1}\) is the Helmholtz morphism).
\(\mathcal{E}_n(\mathcal{V}_r^n)\) is called the sheaf of Euler-Lagrange morphisms. It is said that \(\eta\in(\mathcal{V}_r^{n+1})_\mathbb{Y}\) is locally variational if \(\mathcal{E}_{n+1}(\eta)=0\) (the Helmholtz condition), and globally variational if \(\eta\in(\mathcal{E}_n(\mathcal{V}_r^n))_\mathbb{Y}\). The following cohomological condition determines when a locally variational \(\eta\) is globally variational. Let \(\mathbb{K}_r=\ker\mathcal{E}_n\). The short exact sequence of sheaves \[ 0 \to \mathbb{K}_r \to \mathcal{V}_r^n \to \mathcal{E}_n(\mathcal{V}_r^n) \to 0 \] gives rise to a long exact sequence in cohomology \[ 0 \to (\mathbb{K}_r)_\mathbb{Y} \to (\mathcal{V}_r^n)_\mathbb{Y} \to (\mathcal{E}_n(\mathcal{V}_r^n))_\mathbb{Y} \to H^1(\mathbb{Y},\mathbb{K}_r)\to0\;, \] with \(H^1(\mathbb{Y},\mathbb{K}_r)\cong H_{VS}^{n+1}(\mathbb{Y})\cong H_{dR}^{n+1}(\mathbb{Y})\). Then \(\eta\) is globally variational if and only if \(\delta\eta=0\), where \(\delta\) denotes the map \( (\mathcal{E}_n(\mathcal{V}_r^n))_\mathbb{Y} \to H^1(\mathbb{Y},\mathbb{K}_r)\) of the above sequence.
Given a countable open covering \(\{U_i\}\) of \(\mathbb{Y}\), a system of local sections \(\lambda_i\in(\mathcal{V}_r^n)_{U_i}\) is called a local variational problem when \(\mathcal{E}_n((\lambda_i-\lambda_j)|_{U_i\cap U_j})=0\). Two local variational problems are equivalent if they give rise to the same Euler-Lagrange morphism. Thus every cohomology class in \(H_{VS}^{n+1}(\mathbb{Y})\cong H_{dR}^{n+1}(\mathbb{Y})\) gives rise to a local variational problem.
The authors consider the symmetries of a local variational problem given by a vector field \(\Xi\) on \(\mathbb{Y}\) projectable to a vector field \(\xi\) on \(\mathbb{X}\). Precisely, they consider the variational Lie derivative operator \(\mathcal{L}_{j_r\Xi}\), and prove the following proposition. For the Euler-Lagrange morphism \(\eta_\lambda\) of a local variational problem \(\lambda\equiv(\lambda_i)\), if \(\mathcal{L}_{j_r\Xi}\eta_\lambda=0\), then the following local conservation law holds: \[ 0=d_H\big(j_r\Xi_V\lrcorner\, p_{d_V\lambda_i}+\xi\lrcorner\, \lambda_i-\beta(\lambda_i,\Xi)\big) \] for some \(\beta(\lambda_i,\Xi)\). Here, \(\epsilon(\lambda_i,\Xi)=j_r\Xi_V\lrcorner\, p_{d_V\lambda_i}+\xi\lrcorner\, \lambda_i\) is the canonical or Noether current. The local conserved currents are \(\epsilon(\lambda_i,\Xi)-\beta(\lambda_i,\Xi)\); indeed, \(\epsilon(\lambda_i,\Xi)\) is conserved if and only if \(\Xi\) is also a symmetry of \(\lambda_i\). The authors also show that \[ d_H\big(\epsilon(\lambda_i,\Xi)-\beta(\lambda_i,\Xi)-\epsilon(\lambda_j,\Xi)+\beta(\lambda_j,\Xi)\big)=0\;, \] and the local currents \(\epsilon(\lambda_i,\Xi)-\beta(\lambda_i,\Xi)\) define a global preserved current if and only if \([\Xi_V\lrcorner\,\eta_\lambda]=0\) in \(H^n_{dR}(\mathbb{Y})\). Finally, they prove that this obstruction \([\Xi_V\lrcorner\,\eta_\lambda]\) is the difference of two conceptually independent cohomology classes, one coming from the symmetries of the Euler-Lagrange morphism and the other from the the system of local Noether currents.

MSC:

58A25 Currents in global analysis
55N30 Sheaf cohomology in algebraic topology
55R10 Fiber bundles in algebraic topology
58A12 de Rham theory in global analysis
58A20 Jets in global analysis
58E30 Variational principles in infinite-dimensional spaces
70S10 Symmetries and conservation laws in mechanics of particles and systems

References:

[1] Anderson, I. M., Aspects of the inverse problem to the calculus of variations, Arch. Math. (Brno), 24, 4, 181-202 (1988) · Zbl 0674.58017
[2] Anderson, I. M., Introduction to the variational bicomplex, (Contemp. Math., vol. 132 (1992), Am. Math. Soc.), 51-73, see also: The variational bicomplex, preprint, 1989 · Zbl 0772.58013
[3] Anderson, I. M.; Duchamp, T., On the existence of global variational principles, Amer. J. Math., 102, 781-868 (1980) · Zbl 0454.58021
[4] Bauderon, M., Le problème inverse du calcul des variations, Ann. Inst. Henri Poincaré A, 36, 2, 159-179 (1982) · Zbl 0519.58027
[5] Borowiec, A., On topological Lagrangians and the meaning of the Euler-Lagrange operator, (Myung, H. Ch., Hadronic Mechanics and Nonpotential Interaction (1992), Nova Sci. Publ.), 139-147
[6] Borowiec, A.; Ferraris, M.; Francaviglia, M.; Palese, M., Conservation laws for non-global Lagrangians, Univ. Iagel. Acta Math., 41, 319-331 (2003) · Zbl 1060.70034
[7] Brajerčík, J.; Krupka, D., Cohomology and local variational principles, Publ. R. Soc. Mat. Esp., 11, 119-124 (2007) · Zbl 1235.49081
[8] Brajerčík, J.; Krupka, D., Variational principles for locally variational forms, J. Math. Phys., 46, 5, 052903 (2005), 15 pp · Zbl 1110.58011
[9] Dedecker, P.; Tulczyjew, W. M., Spectral sequences and the inverse problem of the calculus of variations, (Lecture Notes in Math., vol. 836 (1980), Springer-Verlag: Springer-Verlag Berlin), 498-503 · Zbl 0482.49027
[10] Francaviglia, M.; Palese, M.; Vitolo, R., Symmetries in finite order variational sequences, Czechoslovak Math. J., 52(127), 1, 197-213 (2002) · Zbl 1006.58014
[11] Kolář, I., Lie derivatives and higher order Lagrangians, (Kowalski, O., Proc. Diff. Geom. and Its Appl. (1981), Univerzita Karlova: Univerzita Karlova Praha), 117-123 · Zbl 0491.58005
[12] Krupka, D., Some geometric aspects of variational problems in fibred manifolds, Folia Fac. Scio. Natur. UJEP Brunensis (Brno), 14, 1-65 (1973)
[13] Krupka, D., Variational sequences on finite order jet spaces, (Janyška, J.; Krupka, D., Proc. Diff. Geom. and Its Appl.. Proc. Diff. Geom. and Its Appl., Brno, 1989 (1990), World Scientific: World Scientific Singapore), 236-254 · Zbl 0813.58014
[14] Krupka, D., Variational sequences and variational bicomplexes, (Kolář, I.; etal., Proc. VII Conf. Diff. Geom. Appl., Satellite Conf. of ICM in Berlin (1999), Masaryk University: Masaryk University Brno), 525-531 · Zbl 0942.58028
[15] Krupka, D.; Musilova, J., Trivial Lagrangians in field theory, Differential Geom. Appl., 10, 3, 303 (1999), (Erratum) · Zbl 0932.58024
[16] Pommaret, J. F., Spencer sequence and variational sequence, Acta Appl. Math., 41, 285-296 (1995) · Zbl 0840.35085
[17] Sardanashvily, G., Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian
[18] Takens, F., A global version of the inverse problem of the calculus of variations, J. Differential Geom., 14, 543-562 (1979) · Zbl 0463.58015
[19] Torre, C. G., Some remarks on gravitational analogs of magnetic charge, Classical Quantum Gravity, 12, L43-L50 (1995) · Zbl 0839.53064
[20] Tulczyjew, W. M., The Lagrange complex, Bull. Soc. Math. France, 105, 419-431 (1977) · Zbl 0408.58020
[21] Tulczyjew, W. M., The Euler-Lagrange resolution, (Lecture Notes in Math., vol. 836 (1980), Springer-Verlag: Springer-Verlag Berlin), 22-48 · Zbl 0456.58012
[22] Vinogradov, A. M., On the algebro-geometric foundations of Lagrangian field theory, Soviet Math. Dokl., 18, 1200-1204 (1977) · Zbl 0403.58005
[23] Vinogradov, A. M., The \(C\)-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory; II. The nonlinear theory, J. Math. Anal. Appl., 100, 1, 1-40 (1984), 41-129 · Zbl 0548.58014
[24] Vitolo, R., Finite order Lagrangian bicomplexes, Math. Proc. Cambridge Philos. Soc., 125, 1, 321-333 (1998) · Zbl 0927.58008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.