×

Empirical dynamics for longitudinal data. (English) Zbl 1233.62069

Summary: We demonstrate that the processes underlying online auction price bids and many other longitudinal data can be represented by an empirical first order stochastic ordinary differential equation with time-varying coefficients and a smooth drift process. This equation may be empirically obtained from longitudinal observations for a sample of subjects and does not presuppose specific knowledge of the underlying processes. For the nonparametric estimation of the components of the differential equation, it suffices to have available sparsely observed longitudinal measurements which may be noisy and are generated by underlying smooth random trajectories for each subject or experimental unit in the sample. The drift process that drives the equation determines how closely individual process trajectories follow a deterministic approximation of the differential equation. We provide estimates for trajectories and especially the variance function of the drift process. At each fixed time point, the proposed empirical dynamic model implies a decomposition of the derivative of the process underlying the longitudinal data into a component explained by a linear component determined by a varying coefficient function dynamic equation and an orthogonal complement that corresponds to the drift process. An enhanced perturbation result enables us to obtain improved asymptotic convergence rates for eigenfunction derivative estimation and consistency for the varying coefficient function and the components of the drift process. We illustrate the differential equation with an application to the dynamics of online auction data.

MSC:

62G05 Nonparametric estimation
60H30 Applications of stochastic analysis (to PDEs, etc.)
62M09 Non-Markovian processes: estimation
91B26 Auctions, bargaining, bidding and selling, and other market models
62G20 Asymptotic properties of nonparametric inference
65C60 Computational problems in statistics (MSC2010)

Software:

fda (R)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ash, R. B. and Gardner, M. F. (1975). Topics in Stochastic Processes. Probability and Mathematical Statistics 27 . Academic Press, New York. · Zbl 0317.60014
[2] Bapna, R., Jank, W. and Shmueli, G. (2008). Price formation and its dynamics in online auctions. Decis. Support Syst. 44 641-656.
[3] Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications . Springer, New York. · Zbl 0962.60004 · doi:10.1007/978-1-4612-1154-9
[4] Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 136-154. · Zbl 0539.62064 · doi:10.1016/0047-259X(82)90088-4
[5] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and its Applications . Chapman and Hall, London. · Zbl 0873.62037
[6] Fine, J. (1987). On the validity of the perturbation method in asymptotic theory. Statistics 18 401-414. · Zbl 0647.62055 · doi:10.1080/02331888708802037
[7] Gasser, T. and Müller, H.-G. (1984). Estimating regression functions and their derivatives by the kernel method. Scand. J. Statist. 11 171-185. · Zbl 0548.62028
[8] Gasser, T., Müller, H.-G., Köhler, W., Molinari, L. and Prader, A. (1984). Nonparametric regression analysis of growth curves. Ann. Statist. 12 210-229. · Zbl 0535.62088 · doi:10.1214/aos/1176346402
[9] Gervini, D. and Gasser, T. (2005). Nonparametric maximum likelihood estimation of the structural mean of a sample of curves. Biometrika 92 801-820. · Zbl 1151.62026 · doi:10.1093/biomet/92.4.801
[10] Grenander, U. (1950). Stochastic processes and statistical inference. Ark. Mat. 1 195-277. · Zbl 0058.35501 · doi:10.1007/BF02590638
[11] Hall, P. (1984). Integrated square error properties of kernel estimators of regression functions. Ann. Statist. 12 241-260. · Zbl 0544.62036 · doi:10.1214/aos/1176346404
[12] Hall, P., Müller, H.-G. and Wang, J.-L. (2006). Properties of principal component methods for functional and longitudinal data analysis. Ann. Statist. 34 1493-1517. · Zbl 1113.62073 · doi:10.1214/009053606000000272
[13] Härdle, W. and Gasser, T. (1985). On robust kernel estimation of derivatives of regression functions. Scand. J. Statist. 12 233-240. · Zbl 0568.62041
[14] Jank, W. and Shmueli, G. (2005). Profiling price dynamics in online auctions using curve clustering. SSRN eLibrary. Working Paper RHS-06-004, Smith School of Business, Univ. Maryland.
[15] Jank, W. and Shmueli, G. (2006). Functional data analysis in electronic commerce research. Statist. Sci. 21 155-166. · Zbl 1426.62375 · doi:10.1214/088342306000000132
[16] Jones, M. C. and Rice, J. A. (1992). Displaying the important features of large collections of similar curves. Amer. Statist. 46 140-145.
[17] Kato, T. (1995). Perturbation Theory for Linear Operators . Springer, Berlin. · Zbl 0836.47009
[18] Kirkpatrick, M. and Heckman, N. (1989). A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. J. Math. Biol. 27 429-450. · Zbl 0715.92015 · doi:10.1007/BF00290638
[19] Liu, B. and Müller, H.-G. (2008). Functional data analysis for sparse auction data. In Statistical Methods in eCommerce Research (W. Jank and G. Shmueli, eds.) 269-290. Wiley, New York.
[20] Liu, B. and Müller, H.-G. (2009). Estimating derivatives for samples of sparsely observed functions, with application to on-line auction dynamics. J. Amer. Statist. Assoc. 104 704-714. · Zbl 1388.62083
[21] Mas, A. and Menneteau, L. (2003). Perturbation approach applied to the asymptotic study of random operators. In High Dimensional Probability, III (Sandjberg, 2002). Progress in Probability 55 127-134. Birkhäuser, Basel. · Zbl 1053.60002
[22] Mas, A. and Pumo, B. (2007). The ARHD model. J. Statist. Plann. Inference 137 538-553. · Zbl 1103.62088 · doi:10.1016/j.jspi.2005.12.006
[23] Mas, A. and Pumo, B. (2009). Functional linear regression with derivatives. J. Nonparametr. Stat. 21 19-40. · Zbl 1154.62049 · doi:10.1080/10485250802401046
[24] Ramsay, J. (2000). Differential equation models for statistical functions. Canad. J. Statist. 28 225-240. JSTOR: · Zbl 0981.62034 · doi:10.2307/3315975
[25] Ramsay, J. O., Hooker, G., Campbell, D. and Cao, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 69 741-796. · doi:10.1111/j.1467-9868.2007.00610.x
[26] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis , 2nd ed. Springer, New York. · Zbl 1079.62006
[27] Reddy, S. K. and Dass, M. (2006). Modeling on-line art auction dynamics using functional data analysis. Statist. Sci. 21 179-193. · Zbl 1426.62376 · doi:10.1214/088342306000000196
[28] Reithinger, F., Jank, W., Tutz, G. and Shmueli, G. (2008). Modelling price paths in on-line auctions: Smoothing sparse and unevenly sampled curves by using semiparametric mixed models. J. Roy. Statist. Soc. Ser. C 57 127-148. · Zbl 1366.62264 · doi:10.1111/j.1467-9876.2007.00605.x
[29] Rice, J. A. (2004). Functional and longitudinal data analysis: Perspectives on smoothing. Statist. Sinica 631-647. · Zbl 1073.62033
[30] Rice, J. A. and Wu, C. O. (2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57 253-259. JSTOR: · Zbl 1209.62061 · doi:10.1111/j.0006-341X.2001.00253.x
[31] Shi, M., Weiss, R. E. and Taylor, J. M. G. (1996). An analysis of paediatric CD4 counts for Acquired Immune Deficiency Syndrome using flexible random curves. J. Roy. Statist. Soc. Ser. C 45 151-163. · Zbl 0875.62574 · doi:10.2307/2986151
[32] Staniswalis, J. G. and Lee, J. J. (1998). Nonparametric regression analysis of longitudinal data. J. Amer. Statist. Assoc. 93 1403-1418. JSTOR: · Zbl 1064.62522 · doi:10.2307/2670055
[33] Sy, J. P., Taylor, J. M. G. and Cumberland, W. G. (1997). A stochastic model for the analysis of bivariate longitudinal AIDS data. Biometrics 53 542-555. · Zbl 0881.62122 · doi:10.2307/2533956
[34] Wang, N., Carroll, R. J. and Lin, X. (2005). Efficient semiparametric marginal estimation for longitudinal/clustered data. J. Amer. Statist. Assoc. 100 147-157. · Zbl 1117.62440 · doi:10.1198/016214504000000629
[35] Wang, L., Li, H. and Huang, J. Z. (2008). Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J. Amer. Statist. Assoc. 103 1556-1569. · Zbl 1286.62034 · doi:10.1198/016214508000000788
[36] Wang, S., Jank, W., Shmueli, G. and Smith, P. (2008). Modeling price dynamics in ebay auctions using principal differential analysis. J. Amer. Statist. Assoc. 103 1100-1118. · Zbl 1205.91076 · doi:10.1198/016214508000000670
[37] Yao, F. and Lee, T. C. M. (2006). Penalized spline models for functional principal component analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 3-25. · Zbl 1141.62050 · doi:10.1111/j.1467-9868.2005.00530.x
[38] Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 577-590. · Zbl 1117.62451 · doi:10.1198/016214504000001745
[39] Zhao, X., Marron, J. S. and Wells, M. T. (2004). The functional data analysis view of longitudinal data. Statist. Sinica 14 789-808. · Zbl 1073.62001
[40] Ziemer, W. (1989). Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation . Springer, New York. · Zbl 0692.46022 · doi:10.1007/978-1-4612-1015-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.