zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Freezing transition in bi-directional CA model for facing pedestrian traffic. (English) Zbl 1233.90099
Summary: We present a bi-directional cellular automaton (CA) model for facing traffic of pedestrians on a wide passage. The excluded-volume effect and bi-directionality of facing traffic are taken into account. The CA model is not stochastic but deterministic. We study the jamming and freezing transitions when pedestrian density increases. We show that the dynamical phase transitions occur at three stages with increasing density. There exist four traffic states: the free traffic, jammed traffic 1, jammed traffic 2, and frozen state. At the frozen state, all pedestrians stop by preventing from going ahead each other. At three transitions, the pedestrian flow changes from the free traffic through the jammed traffic 1 and jammed traffic 2, to the frozen state.

90B20Traffic problems
37B15Cellular automata
Full Text: DOI
[1] Nagatani, T.: Rep. prog. Phys., Rep. prog. Phys. 65, 1331 (2002)
[2] Helbing, D.: Rev. mod. Phys., Rev. mod. Phys. 73, 1067 (2001)
[3] Chowdhury, D.; Santen, L.; Schadschneider, A.: Phys. rep., Phys. rep. 329, 199 (2000)
[4] Kerner, B. S.: The physics of traffic, (2004)
[5] , Traffic and granular flow (1996)
[6] Helbing, D.; Mulnar, P.: Phys. rev. E, Phys. rev. E 51, 4282 (1995)
[7] Burstedde, C.; Klauck, K.; Schadschneider, A.; Zittartz, J.: Physica A, Physica A 295, 507 (2001) · Zbl 0978.90018
[8] Kirchner, A.; Schadschneider, A.: Physica A, Physica A 312, 260 (2002) · Zbl 0997.90017
[9] Klupfel, H.; Meyer-Konig, M.; Wahle, J.; Schreckenberg, M.: S.babdinit.worschproc. 4th int. Conf. CA, Proc. 4th int. Conf. CA, 63 (2000)
[10] Helbing, D.; Farkas, I.; Vicsek, T.: Nature, Nature 407, 487 (2000)
[11] Tajima, Y.; Nagatani, T.: Physica A, Physica A 292, 545 (2001) · Zbl 0972.90011
[12] Isobe, M.; Adachi, T.; Nagatani, T.: Physica A, Physica A 336, 638 (2004)
[13] Isobe, M.; Helbing, D.; Nagatani, T.: Phys. rev. E, Phys. rev. E 69, 066132 (2004)
[14] Nagai, R.; Nagatani, T.: Physica A, Physica A 366, 503 (2006)
[15] Nagai, R.; Fukamachi, M.; Nagatani, T.: Physica A, Physica A 358, 516 (2006)
[16] Muramatsu, M.; Irie, T.; Nagatani, T.: Physica A, Physica A 267, 487 (1999)
[17] Helbing, D.; Farkas, I.; Vicsek, T.: Phys. rev. Lett., Phys. rev. Lett. 84, 1240 (2000)
[18] Jiang, R.; Wu, Q. S.: Physica A, Physica A 373, 683 (2007)
[19] Weng, W. G.; Shen, S. F.; Tuan, H. Y.; Fan, W. C.: Physica A, Physica A 375, 668 (2007)
[20] Nishinari, K.; Takahashi, D.: J. phys. A, J. phys. A 31, 5439 (1998)