Freezing transition in bi-directional CA model for facing pedestrian traffic. (English) Zbl 1233.90099

Summary: We present a bi-directional cellular automaton (CA) model for facing traffic of pedestrians on a wide passage. The excluded-volume effect and bi-directionality of facing traffic are taken into account. The CA model is not stochastic but deterministic. We study the jamming and freezing transitions when pedestrian density increases. We show that the dynamical phase transitions occur at three stages with increasing density. There exist four traffic states: the free traffic, jammed traffic 1, jammed traffic 2, and frozen state. At the frozen state, all pedestrians stop by preventing from going ahead each other. At three transitions, the pedestrian flow changes from the free traffic through the jammed traffic 1 and jammed traffic 2, to the frozen state.


90B20 Traffic problems in operations research
37B15 Dynamical aspects of cellular automata
Full Text: DOI


[1] Nagatani, T., Rep. Prog. Phys., 65, 1331 (2002)
[2] Helbing, D., Rev. Mod. Phys., 73, 1067 (2001)
[3] Chowdhury, D.; Santen, L.; Schadschneider, A., Phys. Rep., 329, 199 (2000)
[4] Kerner, B. S., The Physics of Traffic (2004), Springer: Springer Heidelberg
[5] (Wolf, D. E.; Schrekenberg, M.; Bachem, A., Traffic and Granular Flow (1996), World Scientific: World Scientific Singapore)
[6] Helbing, D.; Mulnar, P., Phys. Rev. E, 51, 4282 (1995)
[7] Burstedde, C.; Klauck, K.; Schadschneider, A.; Zittartz, J., Physica A, 295, 507 (2001) · Zbl 0978.90018
[8] Kirchner, A.; Schadschneider, A., Physica A, 312, 260 (2002)
[9] Klupfel, H.; Meyer-Konig, M.; Wahle, J.; Schreckenberg, M., (Babdini, S.; Worsch, T., Proc. 4th Int. Conf. CA (2000), Springer: Springer London), 63
[10] Helbing, D.; Farkas, I.; Vicsek, T., Nature, 407, 487 (2000)
[11] Tajima, Y.; Nagatani, T., Physica A, 292, 545 (2001) · Zbl 0972.90011
[12] Isobe, M.; Adachi, T.; Nagatani, T., Physica A, 336, 638 (2004)
[13] Isobe, M.; Helbing, D.; Nagatani, T., Phys. Rev. E, 69, 066132 (2004)
[14] Nagai, R.; Nagatani, T., Physica A, 366, 503 (2006)
[15] Nagai, R.; Fukamachi, M.; Nagatani, T., Physica A, 358, 516 (2006)
[16] Muramatsu, M.; Irie, T.; Nagatani, T., Physica A, 267, 487 (1999)
[17] Helbing, D.; Farkas, I.; Vicsek, T., Phys. Rev. Lett., 84, 1240 (2000)
[18] Jiang, R.; Wu, Q. S., Physica A, 373, 683 (2007)
[19] Weng, W. G.; Shen, S. F.; Tuan, H. Y.; Fan, W. C., Physica A, 375, 668 (2007)
[20] Nishinari, K.; Takahashi, D., J. Phys. A, 31, 5439 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.