zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex dynamics in nonlinear triopoly market with different expectations. (English) Zbl 1233.91180
Summary: A dynamic triopoly game characterized by firms with different expectations is modeled by three-dimensional nonlinear difference equations, where the market has quadratic inverse demand function and the firm possesses cubic total cost function. The local stability of Nash equilibrium is studied. Numerical simulations are presented to show that the triopoly game model behaves chaotically with the variation of the parameters. We obtain the fractal dimension of the strange attractor, bifurcation diagrams, and Lyapunov exponents of the system.

MSC:
91B55Economic dynamics
91A25Dynamic games
WorldCat.org
Full Text: DOI
References:
[1] A. Cournot, Researches into the Mathematical Principles of the Theory of Wealth, chapter 7, Irwin Paper Back Classics in Economics, 1963. · Zbl 28.0211.07
[2] T. Puu, “Complex dynamics with three oligopolists,” Chaos, Solitons and Fractals, vol. 7, no. 12, pp. 2075-2081, 1996. · doi:10.1016/S0960-0779(96)00073-2
[3] E. Ahmed, H. N. Agiza, and S. Z. Hassan, “On modifications of Puu’s dynamical duopoly,” Chaos, Solitons and Fractals, vol. 11, no. 7, pp. 1025-1028, 2000. · Zbl 0955.91045 · doi:10.1016/S0960-0779(98)00322-1
[4] M. T. Yassen and H. N. Agiza, “Analysis of a duopoly game with delayed bounded rationality,” Applied Mathematics and Computation, vol. 138, no. 2-3, pp. 387-402, 2003. · Zbl 1102.91021 · doi:10.1016/S0096-3003(02)00143-1
[5] H. N. Agiza, A. S. Hegazi, and A. A. Elsadany, “Complex dynamics and synchronization of a duopoly game with bounded rationality,” Mathematics and Computers in Simulation, vol. 58, no. 2, pp. 133-146, 2002. · Zbl 1002.91010 · doi:10.1016/S0378-4754(01)00347-0
[6] H. N. Agiza and A. A. Elsadany, “Chaotic dynamics in nonlinear duopoly game with heterogeneous players,” Applied Mathematics and Computation, vol. 149, no. 3, pp. 843-860, 2004. · Zbl 1064.91027 · doi:10.1016/S0096-3003(03)00190-5
[7] G. I. Bischi and M. Kopel, “Equilibrium selection in a nonlinear duopoly game with adaptive expectations,” Journal of Economic Behavior and Organization, vol. 46, no. 1, pp. 73-100, 2001. · doi:10.1016/S0167-2681(01)00188-3
[8] J. G. Du and T. Huang, “New results on stable region of Nash equilibrium of output game model,” Applied Mathematics and Computation, vol. 192, no. 1, pp. 12-19, 2007. · Zbl 1193.91036 · doi:10.1016/j.amc.2007.02.155
[9] S. Brianzoni, R. Coppier, and E. Michetti, “Complex dynamics in a growth model with corruption in public procurement,” Discrete Dynamics in Nature and Society, Article ID 862396, 27 pages, 2011. · Zbl 1213.91117 · doi:10.1155/2011/862396 · eudml:229100
[10] J. H. Ma and W. Z. Ji, “Complexity of repeated game model in electric power triopoly,” Chaos, Solitons and Fractals, vol. 40, no. 4, pp. 1735-1740, 2009. · Zbl 1198.91037 · doi:10.1016/j.chaos.2007.09.058
[11] J. G. Du, T. Huang, and Z. Sheng, “Analysis of decision-making in economic chaos control,” Nonlinear Analysis. Real World Applications, vol. 10, no. 4, pp. 2493-2501, 2009. · Zbl 1163.91331 · doi:10.1016/j.nonrwa.2008.05.007
[12] F. Chen, J. H. Ma, and X. Q. Chen, “The study of dynamic process of the triopoly games in chinese 3G telecommunication market,” Chaos, Solitons and Fractals, vol. 42, no. 3, pp. 1542-1551, 2009. · Zbl 1198.91164 · doi:10.1016/j.chaos.2009.03.039
[13] Z. H. Sheng, T. Huang, J. G. Du, Q. Mei, and H. Huang, “Study on self-adaptive proportional control method for a class of output models,” Discrete and Continuous Dynamical Systems. Series B, vol. 11, no. 2, pp. 459-477, 2009. · Zbl 1153.91661 · doi:10.3934/dcdsb.2009.11.459
[14] E. M. Elabbasy, H. N. Agiza, and A. A. Elsadany, “Analysis of nonlinear triopoly game with heterogeneous players,” Computers and Mathematics with Applications, vol. 57, no. 3, pp. 488-499, 2009. · Zbl 1165.91324 · doi:10.1016/j.camwa.2008.09.046
[15] B. Xin, J. Ma, and Q. Gao, “Complex dynamics of an adnascent-type game model,” Discrete Dynamics in Nature and Society, vol. 2008, 2008. · Zbl 1158.91324 · doi:10.1155/2008/467972
[16] Y. B. Zhang, X. J. Luo, and J. Y. Xue, “Adaptive dynamic Cournot model of optimizing generating units power output under nonlinear market demand,” Proceedings of the CSEE, vol. 23, pp. 80-84, 2003.
[17] Y. Wang, “Basic mathematic of automatic control theory,” in Differential Equation and Difference Equation, pp. 238-242, Science Press, Beijing, China, 1987.
[18] J. L. Kaplan and J. A. Yorke, “Chaotic behavior of multidimensional difference equations,” Lecture Notes in Mathematics, vol. 730, pp. 204-227, 1979. · Zbl 0448.58020 · doi:10.1007/BFb0064319