zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximating ideal filters by systems of fractional order. (English) Zbl 1233.92048
Summary: The contributions in this paper are two fold. On the one hand, we propose a general approach for approximating ideal filters based on fractional calculus from the point of view of systems of fractional order. On the other hand, we suggest that the Paley and Wiener criterion might not be a necessary condition for designing physically realizable ideal filters. As an application of the present approach, we show a case in designing ideal filters for suppressing 50-Hz interference in electrocardiogram (ECG) signals.

92C55Biomedical imaging and signal processing, tomography
94A12Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI
[1] Z. M. Hussain, A. Z. Sadik, and P. O’Shea, Digital Signal Processing: An Introduction with MATLAB and Applications, Springer, New York, NY, USA, 2011. · Zbl 1226.94007
[2] S. S. Bhattacharyya, R. Leupers, and J. Takala, Eds., Handbook of Signal Processing Systems, Springer, New York, NY, USA, 2010. · Zbl 1285.94001
[3] P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Springer, New York, NY, USA, 2011. · Zbl 1209.94001
[4] J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedure, John Wiley & Sons, City, State, USA, 3rd edition, 2000. · Zbl 1187.62204
[5] R. M. Gray and L. D. Davisson, Introduction to Statistical Signal Processing, Cambridge University Press, Cambridge, Mass, USA, 2004. · Zbl 1190.94002
[6] M. Li, “Generation of teletraffic of generalized Cauchy type,” Physica Scripta, vol. 81, no. 2, Article ID 025007, 2010. · Zbl 1191.90013 · doi:10.1088/0031-8949/81/02/025007
[7] L. Wanhammar, Analog Filters Using MATLAB, Springer, New York, NY, USA, 2009. · Zbl 1170.94004
[8] S. K. Mitra and J. F. Kaiser, Handbook for Digital Signal Processing, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0832.94001
[9] J. van de Vegte, Fundamentals of Digital Signal Processing, Prentice Hall, New York, NY, USA, 2003.
[10] R. C. Dorf and R. H. Bishop, Modern Control Systems, Prentice Hall, New York, NY, USA, 9th edition, 2002. · Zbl 0907.93001
[11] M. Li, “Fractal time series-a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. · Zbl 1191.37002 · doi:10.1155/2010/157264
[12] A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill, New York, NY, USA, 1965. · Zbl 0191.46704
[13] R. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, American Mathematical Society Colloquium Publication, New York, NY, USA, 19th edition, 1934. · Zbl 0011.01601
[14] H. Y.-F. Lam, Analog and Digital Filters: Design and Realization, Prentice-Hall, New York, NY, USA, 1979.
[15] R. W. Daniels, Approximation Methods for Electronic Filter Design, McGraw-Hill, New York, NY, USA, 1974. · Zbl 0282.76058
[16] M. D. Lutovac, D. V. Tosic, and B. L. Evans, Filter Design for Signal Processing Using MATLAB© and Mathematica© , Prentice Hall, Upper Saddle River, NJ, USA, 2001.
[17] G. Bianchi and R. Sorrentino, Electronic Filter Simulation & Design, McGraw-Hill Professional, New York, NY, USA, 2007.
[18] S. Butterworth, “On the theory of filter amplifiers,” Wireless Engineer, vol. 7, pp. 536-541, 1930.
[19] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[20] M. D. Ortigueira, “An introduction to the fractional continuous-time linear systems: the 21st century systems,” IEEE Circuits and Systems Magazine, vol. 8, no. 3, Article ID 4609961, pp. 19-26, 2008. · doi:10.1109/MCAS.2008.928419
[21] J. A. Tenreiro MacHado, M. F. Silva, R. S. Barbosa et al., “Some applications of fractional calculus in engineering,” Mathematical Problems in Engineering, vol. 2010, Article ID 639801, 34 pages, 2010. · Zbl 1191.26004 · doi:10.1155/2010/639801 · eudml:226365
[22] S. C. Lim, M. Li, and L. P. Teo, “Langevin equation with two fractional orders,” Physics Letters A, vol. 372, no. 42, pp. 6309-6320, 2008. · Zbl 1225.82049 · doi:10.1016/j.physleta.2008.08.045
[23] Y. Q. Chen and K. L. Moore, “Discretization schemes for fractional-order differentiators and integrators,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, no. 3, pp. 363-367, 2002. · doi:10.1109/81.989172
[24] X. Zhang, “Maxflat fractional delay IIR filter design,” IEEE Transactions on Signal Processing, vol. 57, no. 8, pp. 2950-2956, 2009. · doi:10.1109/TSP.2009.2019231
[25] C. A. Monje, Y.-Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu, Fractional Order Systems and Controls-Fundamentals and Applications, Springer, New York, NY, USA, 2010. · Zbl 1211.93002
[26] G. Arfken, Mathematical Methods for Physicists, Academic Press, Orlando, Fla, USA, 3rd edition, 1985. · Zbl 0135.42304
[27] J. L. Talmaon, Pattern recognition of the ECG: a structured analysis, Ph.D. thesis, 1983.
[28] C. Levkov, G. Michov, R. Ivanov, and I. K. Daskalov, “Subtraction of 50\thinspace Hz interference from the electrocardiogram,” Medical and Biological Engineering and Computing, vol. 22, no. 4, pp. 371-373, 1984.
[29] S. M. M. Martens, M. Mischi, S. G. Oei, and J. W. M. Bergmans, “An improved adaptive power line interference canceller for electrocardiography,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 11, pp. 2220-2231, 2006. · doi:10.1109/TBME.2006.883631
[30] I. Dotsinsky and T. Stoyanov, “Power-line interference cancellation in ECG signals,” Biomedical Instrumentation and Technology, vol. 39, no. 2, pp. 155-162, 2005.
[31] M. Li, “Comparative study of IIR notch filters for suppressing 60\thinspace Hz interference in electrocardiogram signals,” International Journal of Electronics and Computers, vol. 1, no. 1, pp. 7-18, 2009.
[32] C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems, vol. 43, no. 3-4, pp. 207-217, 2010. · doi:10.1007/s11235-009-9208-3
[33] C. Cattani and G. Pierro, “Complexity on acute myeloid leukemia mRNA transcript variant,” Mathematical Problems in Engineering, vol. 2011, Article ID 379873, 16 pages, 2011. · Zbl 1235.92025 · doi:10.1155/2011/379873
[34] E. G. Bakhoum and C. Toma, “Specific mathematical aspects of dynamics generated by coherence functions,” Mathematical Problems in Engineering, vol. 2011, Article ID 436198, 10 pages, 2011. · Zbl 1248.37075 · doi:10.1155/2011/436198
[35] E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID 428903, 13 pages, 2010. · Zbl 1191.35219 · doi:10.1155/2010/428903 · eudml:225118
[36] B. N. N. Achar, J. W. Hanneken, and T. Clarke, “Damping characteristics of a fractional oscillator,” Physica A, vol. 339, no. 3-4, pp. 311-319, 2004. · doi:10.1016/j.physa.2004.03.030
[37] S. C. Lim and S. V. Muniandy, “Self-similar Gaussian processes for modeling anomalous diffusion,” Physical Review E, vol. 66, no. 2, Article ID 021114, pp. 021114-1-021114-14, 2002. · doi:10.1103/PhysRevE.66.021114
[38] M. Li, S. C. Lim, and S. Y. Chen, “Exact solution of impulse response to a class of fractional oscillators and its stability,” Mathematical Problems in Engineering, vol. 2011, Article ID 657839, 9 pages, 2011. · Zbl 1202.34018 · doi:10.1155/2011/657839 · eudml:231368