Approximating ideal filters by systems of fractional order. (English) Zbl 1233.92048

Summary: The contributions in this paper are two fold. On the one hand, we propose a general approach for approximating ideal filters based on fractional calculus from the point of view of systems of fractional order. On the other hand, we suggest that the Paley and Wiener criterion might not be a necessary condition for designing physically realizable ideal filters. As an application of the present approach, we show a case in designing ideal filters for suppressing 50-Hz interference in electrocardiogram (ECG) signals.


92C55 Biomedical imaging and signal processing
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI


[1] Z. M. Hussain, A. Z. Sadik, and P. O’Shea, Digital Signal Processing: An Introduction with MATLAB and Applications, Springer, New York, NY, USA, 2011. · Zbl 1226.94007
[2] S. S. Bhattacharyya, R. Leupers, and J. Takala, Eds., Handbook of Signal Processing Systems, Springer, New York, NY, USA, 2010. · Zbl 1285.94001
[3] P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Springer, New York, NY, USA, 2011. · Zbl 1209.94001
[4] J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedure, John Wiley & Sons, City, State, USA, 3rd edition, 2000. · Zbl 1187.62204
[5] R. M. Gray and L. D. Davisson, Introduction to Statistical Signal Processing, Cambridge University Press, Cambridge, Mass, USA, 2004. · Zbl 1190.94002
[6] M. Li, “Generation of teletraffic of generalized Cauchy type,” Physica Scripta, vol. 81, no. 2, Article ID 025007, 2010. · Zbl 1191.90013 · doi:10.1088/0031-8949/81/02/025007
[7] L. Wanhammar, Analog Filters Using MATLAB, Springer, New York, NY, USA, 2009. · Zbl 1170.94004
[8] S. K. Mitra and J. F. Kaiser, Handbook for Digital Signal Processing, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0832.94001
[9] J. van de Vegte, Fundamentals of Digital Signal Processing, Prentice Hall, New York, NY, USA, 2003.
[10] R. C. Dorf and R. H. Bishop, Modern Control Systems, Prentice Hall, New York, NY, USA, 9th edition, 2002. · Zbl 0907.93001
[11] M. Li, “Fractal time series-a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. · Zbl 1191.37002 · doi:10.1155/2010/157264
[12] A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill, New York, NY, USA, 1965. · Zbl 0191.46704
[13] R. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, American Mathematical Society Colloquium Publication, New York, NY, USA, 19th edition, 1934. · Zbl 0011.01601
[14] H. Y.-F. Lam, Analog and Digital Filters: Design and Realization, Prentice-Hall, New York, NY, USA, 1979.
[15] R. W. Daniels, Approximation Methods for Electronic Filter Design, McGraw-Hill, New York, NY, USA, 1974. · Zbl 0282.76058
[16] M. D. Lutovac, D. V. Tosic, and B. L. Evans, Filter Design for Signal Processing Using MATLAB©and Mathematica©, Prentice Hall, Upper Saddle River, NJ, USA, 2001.
[17] G. Bianchi and R. Sorrentino, Electronic Filter Simulation & Design, McGraw-Hill Professional, New York, NY, USA, 2007.
[18] S. Butterworth, “On the theory of filter amplifiers,” Wireless Engineer, vol. 7, pp. 536-541, 1930.
[19] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[20] M. D. Ortigueira, “An introduction to the fractional continuous-time linear systems: the 21st century systems,” IEEE Circuits and Systems Magazine, vol. 8, no. 3, Article ID 4609961, pp. 19-26, 2008. · doi:10.1109/MCAS.2008.928419
[21] J. A. Tenreiro MacHado, M. F. Silva, R. S. Barbosa et al., “Some applications of fractional calculus in engineering,” Mathematical Problems in Engineering, vol. 2010, Article ID 639801, 34 pages, 2010. · Zbl 1191.26004 · doi:10.1155/2010/639801
[22] S. C. Lim, M. Li, and L. P. Teo, “Langevin equation with two fractional orders,” Physics Letters A, vol. 372, no. 42, pp. 6309-6320, 2008. · Zbl 1225.82049 · doi:10.1016/j.physleta.2008.08.045
[23] Y. Q. Chen and K. L. Moore, “Discretization schemes for fractional-order differentiators and integrators,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, no. 3, pp. 363-367, 2002. · Zbl 1368.65035 · doi:10.1109/81.989172
[24] X. Zhang, “Maxflat fractional delay IIR filter design,” IEEE Transactions on Signal Processing, vol. 57, no. 8, pp. 2950-2956, 2009. · Zbl 1391.94473 · doi:10.1109/TSP.2009.2019231
[25] C. A. Monje, Y.-Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu, Fractional Order Systems and Controls-Fundamentals and Applications, Springer, New York, NY, USA, 2010. · Zbl 1211.93002
[26] G. Arfken, Mathematical Methods for Physicists, Academic Press, Orlando, Fla, USA, 3rd edition, 1985. · Zbl 0135.42304
[27] J. L. Talmaon, Pattern recognition of the ECG: a structured analysis, Ph.D. thesis, 1983.
[28] C. Levkov, G. Michov, R. Ivanov, and I. K. Daskalov, “Subtraction of 50Hz interference from the electrocardiogram,” Medical and Biological Engineering and Computing, vol. 22, no. 4, pp. 371-373, 1984.
[29] S. M. M. Martens, M. Mischi, S. G. Oei, and J. W. M. Bergmans, “An improved adaptive power line interference canceller for electrocardiography,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 11, pp. 2220-2231, 2006. · doi:10.1109/TBME.2006.883631
[30] I. Dotsinsky and T. Stoyanov, “Power-line interference cancellation in ECG signals,” Biomedical Instrumentation and Technology, vol. 39, no. 2, pp. 155-162, 2005.
[31] M. Li, “Comparative study of IIR notch filters for suppressing 60Hz interference in electrocardiogram signals,” International Journal of Electronics and Computers, vol. 1, no. 1, pp. 7-18, 2009.
[32] C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems, vol. 43, no. 3-4, pp. 207-217, 2010. · Zbl 05803252 · doi:10.1007/s11235-009-9208-3
[33] C. Cattani and G. Pierro, “Complexity on acute myeloid leukemia mRNA transcript variant,” Mathematical Problems in Engineering, vol. 2011, Article ID 379873, 16 pages, 2011. · Zbl 1235.92025 · doi:10.1155/2011/379873
[34] E. G. Bakhoum and C. Toma, “Specific mathematical aspects of dynamics generated by coherence functions,” Mathematical Problems in Engineering, vol. 2011, Article ID 436198, 10 pages, 2011. · Zbl 1248.37075 · doi:10.1155/2011/436198
[35] E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID 428903, 13 pages, 2010. · Zbl 1191.35219 · doi:10.1155/2010/428903
[36] B. N. N. Achar, J. W. Hanneken, and T. Clarke, “Damping characteristics of a fractional oscillator,” Physica A, vol. 339, no. 3-4, pp. 311-319, 2004. · doi:10.1016/j.physa.2004.03.030
[37] S. C. Lim and S. V. Muniandy, “Self-similar Gaussian processes for modeling anomalous diffusion,” Physical Review E, vol. 66, no. 2, Article ID 021114, pp. 021114-1-021114-14, 2002. · doi:10.1103/PhysRevE.66.021114
[38] M. Li, S. C. Lim, and S. Y. Chen, “Exact solution of impulse response to a class of fractional oscillators and its stability,” Mathematical Problems in Engineering, vol. 2011, Article ID 657839, 9 pages, 2011. · Zbl 1202.34018 · doi:10.1155/2011/657839
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.