zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global properties of virus dynamics models with multitarget cells and discrete-time delays. (English) Zbl 1233.92059
Summary: We propose a class of virus dynamics models with multitarget cells and multiple intracellular delays and study their global properties. The first model is a 5-dimensional system of nonlinear delay differential equations (DDEs) that describes the interaction of the virus with two classes of target cells. The second model is a $(2n + 1)$-dimensional system of nonlinear DDEs that describes the dynamics of the virus, $n$ classes of uninfected target cells, and $n$ classes of infected target cells. The third model generalizes the second one by assuming that the incidence rate of infection is given by saturation functional response. Two types of discrete time delays are incorporated into these models to describe (i) the latent period between the time the target cell is contacted by the virus particle and the time the virus enters the cell, (ii) the latent period between the time the virus has penetrated into a cell and the time of the emission of infectious (mature) virus particles. Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected and infected steady states of these models. We have proven that if the basic reproduction number $R_0$ is less than unity, then the uninfected steady state is globally asymptotically stable, and if $R_0 > 1$ (or if the infected steady state exists), then the infected steady state is globally asymptotically stable.

92C60Medical epidemiology
34K20Stability theory of functional-differential equations
34K60Qualitative investigation and simulation of models
37N25Dynamical systems in biology
Full Text: DOI