Dong, Yali; Yang, Yingjuan Observer design for a class of multi-input multi-output nonlinear systems. (English) Zbl 1233.93014 Int. J. Syst. Sci. 42, No. 4, 695-703 (2011). Summary: In this article, the problem of state observer design for a class of multi-input multi-output nonlinear systems is considered. Via state transformation and the constructive use of a Lyapunov function, the new observer design approach is addressed by introducing a parameter \(\varepsilon \) in the observer. Some sufficient conditions are given which guarantee the estimation error to asymptotically converge to zero under adaptive conditions. An example is included to illustrate the method. Cited in 4 Documents MSC: 93B07 Observability 93C10 Nonlinear systems in control theory 93B51 Design techniques (robust design, computer-aided design, etc.) Keywords:state observer design; multi-input multi-output nonlinear systems; Lyapunov function; adaptive conditions PDF BibTeX XML Cite \textit{Y. Dong} and \textit{Y. Yang}, Int. J. Syst. Sci. 42, No. 4, 695--703 (2011; Zbl 1233.93014) Full Text: DOI References: [1] DOI: 10.1080/00207720701620043 · Zbl 1160.93303 · doi:10.1080/00207720701620043 [2] Bestle D, International Journal of Control 3 pp 47– (1983) [3] DOI: 10.1080/00207178808906138 · Zbl 0648.93022 · doi:10.1080/00207178808906138 [4] DOI: 10.1080/00207179308934406 · Zbl 0772.93018 · doi:10.1080/00207179308934406 [5] DOI: 10.1109/9.871767 · Zbl 0988.93007 · doi:10.1109/9.871767 [6] DOI: 10.1109/TAC.2002.803547 · Zbl 1364.93087 · doi:10.1109/TAC.2002.803547 [7] DOI: 10.1080/00207720601014081 · Zbl 1111.93009 · doi:10.1080/00207720601014081 [8] DOI: 10.1080/00207720600774289 · Zbl 1101.93019 · doi:10.1080/00207720600774289 [9] DOI: 10.1109/9.895580 · Zbl 0990.93017 · doi:10.1109/9.895580 [10] DOI: 10.1080/00207178708934024 · Zbl 0634.93012 · doi:10.1080/00207178708934024 [11] DOI: 10.1137/0323016 · Zbl 0569.93035 · doi:10.1137/0323016 [12] DOI: 10.1080/00207170500073806 · Zbl 1098.93007 · doi:10.1080/00207170500073806 [13] DOI: 10.1016/j.sysconle.2006.03.007 · Zbl 1100.93047 · doi:10.1016/j.sysconle.2006.03.007 [14] DOI: 10.1109/TAC.2006.878784 · Zbl 1366.93162 · doi:10.1109/TAC.2006.878784 [15] DOI: 10.1016/S0167-6911(97)00025-X · Zbl 0901.93013 · doi:10.1016/S0167-6911(97)00025-X [16] DOI: 10.1016/0005-1098(93)90145-J · Zbl 0772.93017 · doi:10.1016/0005-1098(93)90145-J [17] DOI: 10.1080/00207729608929309 · Zbl 0865.93010 · doi:10.1080/00207729608929309 [18] DOI: 10.1109/TAC.2003.820071 · Zbl 1364.93288 · doi:10.1109/TAC.2003.820071 [19] DOI: 10.1080/00207177308932395 · Zbl 0249.93006 · doi:10.1080/00207177308932395 [20] DOI: 10.1016/0167-6911(89)90030-3 · Zbl 0684.93006 · doi:10.1016/0167-6911(89)90030-3 [21] Zemouche A, IEEE Transaction on Automatic Control 53 pp 777– (2006) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.