Semiactive vibration control of nonlinear structures through adaptive backstepping techniques with \(H_{\infty }\) performance. (English) Zbl 1233.93062

Summary: This article presents a new approach to the vibration mitigation problem in structures subject to seismic motions. These kinds of structures are characterised by the uncertainties of the parameters that describe their dynamics, such as stiffness and damping coefficients. Moreover, the dampers used to mitigate the vibrations caused by earthquakes are usually nonlinear devices with frictional or hysteretic dynamics. We propose an adaptive backstepping controller to account for the uncertainties and the nonlinearities. The controller is formulated in such a way that it satisfies an \(H_{\infty }\) performance. It is designed for a 10-storey building whose base is isolated with a frictional damper (passive device) and a magnetorheological damper (semiactive device). Controller performance is analysed through numerical simulations.


93C40 Adaptive control/observation systems
93B36 \(H^\infty\)-control
93C10 Nonlinear systems in control theory
70Q05 Control of mechanical systems
86A17 Global dynamics, earthquake problems (MSC2010)
Full Text: DOI


[1] DOI: 10.1002/1521-4001(200201)82:1<3::AID-ZAMM3>3.0.CO;2-O · Zbl 1045.76055 · doi:10.1002/1521-4001(200201)82:1<3::AID-ZAMM3>3.0.CO;2-O
[2] DOI: 10.1088/0964-1726/5/5/006 · doi:10.1088/0964-1726/5/5/006
[3] DOI: 10.1088/0964-1726/7/5/012 · doi:10.1088/0964-1726/7/5/012
[4] Karimi HR, in Proceedings of the Institution of Mechanical Engineers 223 pp 809– (2009)
[5] DOI: 10.1080/00207720500436344 · Zbl 1126.93394 · doi:10.1080/00207720500436344
[6] DOI: 10.1111/j.1467-8667.2006.00448.x · doi:10.1111/j.1467-8667.2006.00448.x
[7] DOI: 10.1016/j.mechatronics.2009.01.006 · doi:10.1016/j.mechatronics.2009.01.006
[8] DOI: 10.1016/S0016-0032(00)00024-7 · Zbl 0997.93083 · doi:10.1016/S0016-0032(00)00024-7
[9] Narasimhan S, Journal of Structural Control 13 pp 573– (2006)
[10] DOI: 10.1061/(ASCE)0733-9399(2002)128:10(1088) · doi:10.1061/(ASCE)0733-9399(2002)128:10(1088)
[11] DOI: 10.1088/0964-1726/10/4/322 · doi:10.1088/0964-1726/10/4/322
[12] DOI: 10.1061/(ASCE)0733-9399(1997)123:3(230) · doi:10.1061/(ASCE)0733-9399(1997)123:3(230)
[13] DOI: 10.1061/(ASCE)0733-9399(2002)128:5(540) · doi:10.1061/(ASCE)0733-9399(2002)128:5(540)
[14] DOI: 10.1016/S0141-0296(01)00097-9 · doi:10.1016/S0141-0296(01)00097-9
[15] DOI: 10.1016/S0957-4158(01)00032-0 · doi:10.1016/S0957-4158(01)00032-0
[16] Zapateiro M, Journal of Smart Structures and Systems 6 pp 101–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.