zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive stabilization of time-delay feedforward nonlinear systems. (English) Zbl 1233.93082
Summary: We consider the adaptive stabilization problem for feedforward nonlinear systems with time delays. An adaptive stabilizer is proposed. Our stabilizer takes a nested saturation feedback, and a set of switching logics is designed to tune online the saturation levels in a piecewise constant or switching manner. It has been shown that under our proposed control, all closed-loop states are bounded and asymptotic regulation is achieved.

MSC:
93D21Adaptive or robust stabilization
93C40Adaptive control systems
93C10Nonlinear control systems
93C15Control systems governed by ODE
WorldCat.org
Full Text: DOI
References:
[1] Chen, T. S.; Huang, J.: Disturbance attenuation of feedforward systems with dynamic uncertainty, IEEE transactions on automatic control 53, 1711-1717 (2008)
[2] Ge, S. S.; Hong, F.; Lee, T. H.: Robust adaptive control of nonlinear systems with unknown time delays, Automatica 41, 1181-1190 (2005) · Zbl 1078.93046 · doi:10.1016/j.automatica.2005.01.011
[3] Hespanha, J. P.; Liberzon, D.; Morse, A. S.: Supervision of integral-input- to-state stabilizing controllers, Automatica 38, 1327-1335 (2002) · Zbl 1172.93394 · doi:10.1016/S0005-1098(02)00024-9
[4] Hespanha, J. P.; Liberzon, D.; Morse, A. S.: Hysteresis-based switching algorithms for supervisory control of uncertain systems, Automatica 39, 263-272 (2003) · Zbl 1011.93500 · doi:10.1016/S0005-1098(02)00241-8
[5] Hua, C. C.; Wang, Q. G.; Guan, X. P.: Adaptive tracking controller design of nonlinear systems with time delays and unknown dead-zone input, IEEE transactions on automatic control 53, 1753-1759 (2008)
[6] Jankovic, M.; Sepulchre, R.; Kokotovic, P. V.: Constructive Lyapunov stabilization of nonlinear cascade systems, IEEE transactions on automatic control 41, 1723-1735 (1996) · Zbl 0869.93039 · doi:10.1109/9.545712
[7] Jankovic, M.; Sepulchre, R.; Kokotovic, P. V.: Global adaptive stabilization of cascade nonlinear systems, Automatica 33, 263-268 (1997) · Zbl 0876.93082 · doi:10.1016/S0005-1098(96)00181-1
[8] Jiao, X. H.; Shen, T.: Adaptive feedback control of nonlinear time-delay systems: the lasalle--razumikhin-based approach, IEEE transactions on automatic control 50, 1909-1913 (2005)
[9] Kaliora, G.; Astolfi, A.: Non-linear control of feedforward systems with bounded signals, IEEE transactions on automatic control 49, 1975-1990 (2004)
[10] Krishnamurthy, P.; Khorrami, F.: Generalized state scaling and applications to feedback, feedforward nonlinear systems, IEEE transactions on automatic control 52, 102-108 (2007)
[11] Krstic, M.: Feedback linearizability and explicit integrator forwarding controllers for classes of feedforward systems, IEEE transactions on automatic control 49, 1668-1682 (2004)
[12] Krstic, M.: Delay compensation for nonlinear, adaptive, and PDE systems, (2009) · Zbl 1181.93003
[13] Mazenc, F.; Mondie, S.; Francisco, R.: Global asymptotic stabilization of feedforward systems with delay in the input, IEEE transactions on automatic control 49, 844-850 (2004)
[14] Mazenc, F.; Praly, L.: Adding integrations, saturated control, and stabilization for feedforward systems, IEEE transactions on automatic control 41, 1559-1578 (1996) · Zbl 0865.93049 · doi:10.1109/9.543995
[15] Miller, D. E.; Davison, E. J.: An adaptive controller which provides an arbitrary good transient and steady-state response, IEEE transactions on automatic control 36, 68-81 (1991) · Zbl 0725.93074 · doi:10.1109/9.62269
[16] Morse, A. S.: Control using logic-based switching, Trends in control, 69-113 (1995)
[17] Niculescu, S. L.: Delay effects on stability: a robust control approach, (2001) · Zbl 0997.93001
[18] Teel, A. (1992). Using saturation to stabilize a class of single-input partially linear composite systems. In Proceedings of the IFAC NOLCOS. Bordeaux, France(pp. 379--384).
[19] Teel, A.: A nonlinear small gain theorem for analysis of control systems with saturation, IEEE transactions on automatic control 41, 1256-1270 (1996) · Zbl 0863.93073 · doi:10.1109/9.536496
[20] Tsinias, J.; Tzamtzi, M. P.: An explicit formula of bounded feedback stabilizers for feedforward systems, Systems and control letters 43, 247-261 (2001) · Zbl 0974.93056 · doi:10.1016/S0167-6911(01)00107-4
[21] Ye, X.: Logic-based switching adaptive stabilization of feedforward nonlinear systems, IEEE transactions on automatic control 44, 2174-2178 (1999) · Zbl 1136.93431 · doi:10.1109/9.802940
[22] Ye, X.: Universal stabilization of feedforward nonlinear systems, Automatica 39, 141-147 (2003) · Zbl 1010.93080 · doi:10.1016/S0005-1098(02)00196-6
[23] Yoo, S. J.; Park, J. B.; Choi, Y. H.: Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays, IEEE transactions on automatic control 52, 2360-2365 (2007)
[24] Zhang, T. P.; Ge, S. S.: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form, Automatica 44, 1895-1903 (2008) · Zbl 1149.93322 · doi:10.1016/j.automatica.2007.11.025
[25] Zhou, J.; Wen, C.; Wang, W.: Adaptive backstepping control of uncertain systems with unknown input time-delay, Automatica 45, 1415-1422 (2009) · Zbl 1166.93339 · doi:10.1016/j.automatica.2009.01.012