Adaptive-based methods for information transmission by means of chaotic signal source modulation. (English. Russian original) Zbl 1233.94007

Autom. Remote Control 72, No. 9, 1967-1980 (2011); translation from Upr. Bol’sh. Sist. 2009, No. 23, 56-80 (2009).
Summary: Three methods for information transmission based on chaotic signal source modulation are described. They are based on: application of adaptive observers, adaptive identification with the Implicit Adjustable Model, and frequency modulation with the adaptive demodulator, respevctively. Application of the proposed methods for information transmission by means of chaotic Chua generator modulation is presented.


94A14 Modulation and demodulation in information and communication theory
Full Text: DOI


[1] Andrievsky, B.R., Nikiforov, V.O., and Fradkov, A.L., Methods for Control of Periodic and Chaotic Oscillations, Jubilee Conference of RFBR, April 24–26, 2002, Moscow: RFBR, 2002.
[2] Andrievskii, B.R., Nikiforov, V.O., and Fradkov, A.L., Adaptive Observer-based Synchronization of the Nonlinear Nonpassifiable Systems, Autom. Remote Control, 2007, vol. 68, no. 7, pp. 1186–1200. · Zbl 1141.93315 · doi:10.1134/S0005117907070077
[3] Andrievsky, B.R. and Fradkov, A.L., Izbrannye glavy teorii avtomaticheskogo upravleniya s primerami na yazyke MATLAB (Selected Chapters of the Automatic Control Theory with Examples in MATLAB), St. Petersburg: Nauka, 1999. · Zbl 0964.93005
[4] Andrievsky, B.R. and Fradkov, A.L., Elementy matematicheskogo modelirovaniya v programmnykh sredakh MATLAB 5 i Scilab (Elements of Mathematical Modeling in the MATLAB 5 and Scilab Software Environments), St. Petersburg: Nauka, 2001. · Zbl 0988.68227
[5] Andrievskii, B.R. and Fradkov, A.L., Control of Chaos: Methods and Applications. I. Methods, Autom. Remote Control, 2003, vol. 64, no. 5, pp. 673–713. · Zbl 1107.37302 · doi:10.1023/A:1023684619933
[6] Andrievskii, B.R. and Fradkov, A.L., Control of Chaos: Methods and Applications. II. Applications, Autom. Remote Control, 2004, vol. 65, no. 4, pp. 505–533. · Zbl 1115.37315 · doi:10.1023/B:AURC.0000023528.59389.09
[7] Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the Mathematical Theory of Stability), Moscow: Mosk. Gos. Univ., 1998, 2nd ed.
[8] Dmitriev, A.S., Panas, A.I., and Starkov, S.O., Dynamic Chaos as a Paradigm of the Modern Communication Systems, Zarub. Radioelektron., 1997, no. 10, pp. 4–26.
[9] Dmitriev, A.S. and Kuz’min, L.V., Information Transmission Using a Synchronous Chaotic Response with Filtering in the Communication Channel, Pis’ma Zh. Tekh. Fiz., 1999, vol. 25, no. 8, pp. 71–77.
[10] Napartovich, A.P. and Sukharev, A.G., Decoding of Information in a System with a Chaotic Laser Controlled by a Chaotic Signal, Kvantov. Elektron., 1998, vol. 25, no. 1, pp. 85–88.
[11] Andrievsky, B.R., Blekhman, I.I., Bortsov, Yu.A., et al., Upravlenie mekhatronnymi vibratsionnymi ustanovkami (Control of Mechanotronic Vibrational Units), Blekhman, I.I. and Fradkov, A.L., Eds., St. Petersburg: Nauka, 2001.
[12] Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamical Systems), Moscow: Nauka, 1981. · Zbl 0522.93002
[13] Fradkov, A.L., Adaptivnoe upravlenie v slozhnykh sistemakh (Adaptive Control in Complex Systems), Moscow: Nauka, 1990. · Zbl 0732.93046
[14] Fradkov, A.L., Cybernetical Physics: From Control of Chaos to Quantum Control, New York: Springer, 2007. · Zbl 1117.81002
[15] Shalfeev, V.D., Osipov, G.V., Kozlov, A.K., and Volkovskii, A.R., Chaotic Oscillations: Generation, Synchronization, Control, Zarub. Radioelektron., Usp. Sovr. Radioelektron., 1997, no. 10, pp. 27–49.
[16] Shimanskii, V.E., Communication System with Chaotic Carrier Based on the ADSP-2181 Digital Signal Processor, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 1998, vol. 6, no. 5, pp. 66–75.
[17] Abel, A. and Schwarz, W., Chaos Communication-Principles, Schemes, and System Analysis, Proc. IEEE, 2002, vol. 90, no. 5, pp. 691–710. · doi:10.1109/JPROC.2002.1015002
[18] Alvarez-Ramirez, J., Puebla, H., and Cervantes, I., Stability of Observer-based Chaotic Communications for a Class of Lur’e Systems, Int. J. Bifurcat. Chaos, 2002, vol. 12, no. 7, pp. 1605–1618. · doi:10.1142/S0218127402005352
[19] Andrievsky, B.R., Information Transmission by Adaptive Identification with Chaotic Carrier, Proc. 2nd International Conf. ”Control of Oscillations and Chaos (COC 2000),” St. Petersburg, 2000, vol. 1, pp. 115–117. · doi:10.1109/COC.2000.873525
[20] Andrievsky, B.R., Adaptive SynchronizationMethods for Signal Transmission on Chaotic Carriers, Math. Comput. Simulat., 2002, vol. 58, nos. 4–6, pp. 285–293. · Zbl 0995.65133 · doi:10.1016/S0378-4754(01)00373-1
[21] Andrievsky, B.R. and Fradkov, A.L., Information Transmission by Adaptive Synchronization with Chaotic Carrier and Noisy Channel, Proc. 39th IEEE Conf. Decisions and Control, Sydney, December 12–15, 2000, pp. 1025–1030.
[22] Andrievsky, B.R. and Fradkov A.L., Information Transmission by Means of Chaos-based Frequency Modulation and Adaptive Identification, Proc. 2007 IEEE Multi-conference on Systems and Control, Singapore, October 1–3, 2007.
[23] Blekhman, I.I., Fradkov, A.L., Nijmeijer, H., and Pogromsky, A.Y., On Self-synchronization and Controlled Synchronization, Syst. Control Lett., 1997, vol. 31, pp. 299–305. · Zbl 0901.93028 · doi:10.1016/S0167-6911(97)00047-9
[24] Brown, R., and Chua, L.O., Clarifying Chaos III: Chaotic and Stochastic Processes, Chaotic Resonance and Number Theory, Int. J. Bifurcat. Chaos, 1999, no. 9(5), pp. 785–803. · Zbl 1089.37511
[25] Chen, G. and Dong, X., From Chaos to Order: Perspectives, Methodologies and Applications, Singapore: World Scientific, 1998. · Zbl 0908.93005
[26] Cuomo, K.M., Oppenheim, A.V., and Strogatz, S.H., Synchronization of Lorenz-based Chaotic Circuits with Application to Communications, IEEE Trans. Circ. Syst., 1993, vol. 40, no. 10, pp. 626–633. · doi:10.1109/82.246163
[27] Cuomo, K.M. and Oppenheim, A.V., Circuit Implementation of Synchronized Chaos with Applications to Communications, Phys. Rew. Lett., 1993, vol. 71, no. 1, pp. 65–68. · doi:10.1103/PhysRevLett.71.65
[28] Demircioğlu, H. and Yavuzyilmaz, C IEEE Control Syst. Mag., 2002, vol. 22, no. 4, pp. 57–67. · doi:10.1109/MCS.2002.1021645
[29] Fradkov, A.L. and Andrievsky, B.R., Adaptive Robustified Synchronization Methods for Chaos-based Information Transmission, Proc. 1st IEEE Int. Conf. Circ. Syst. for Communic., St. Petersburg, 2002, pp. 275–280.
[30] Fradkov, A.L., Nijmeijer, H., and Markov, A.Yu., Adaptive Observer-based Synchronization for Communication, Int. J. Bifurcat. Chaos, 2000, vol. 10, no. 12, pp. 2807–2813. · Zbl 0972.93005 · doi:10.1142/S0218127400001869
[31] Fradkov, A.L., Nikiforov, V.O., and Andrievsky, B.R., Adaptive Observers for Nonlinear Nonpassifiable Systems with Application to Signal Transmission, Proc. 41st IEEE Conf. Dec. Control (CDC’02), USA, 2002, pp. 4704–4711.
[32] Fradkov, A.L. and Pogromsky, A.Y., Introduction to Control of Oscillations and Chaos, Singapore: World Scientific, 1998. · Zbl 0945.93003
[33] Gawthrop, P.J., Continuous-Time Self-Tuning Control, Letchworth: Research Studies Press, 1987, vol. 1. · Zbl 0666.93044
[34] Hasler, M. and Schimming, Th., Chaos Communication over Noisy Channels, Int. J. Bifurc. Chaos, 2000, vol. 10, no. 4, pp. 719–735. · Zbl 1090.94526
[35] Kolumban, G., Kennedy, M.P., and Chua, L.O., The Role of Synchronization in Digital Communications Using Chaos. Part I: Fundamentals of Digital Communications, IEEE Trans. Circ. Syst., 1997, vol. 44, no. 10, pp. 927–936; Part II: Chaotic Modulation and Chaotic Synchronization, IEEE Trans. Circ. Syst., 1998, vol. 45, no. 11, pp. 1129–1140. · doi:10.1109/81.633882
[36] Lion, P.M., Rapid Identification of Linear and Nonlinear Systems, AIAA J., 1967, vol. 5, pp. 1835–1842. · doi:10.2514/3.4313
[37] Markov, A.Yu. and Fradkov, A.L., Adaptive Synchronization of Chaotic Systems Based on Speed Gradient Method and Passification, IEEE Trans. Circ. Syst., 1997, no. 11, pp. 905–912.
[38] Peterson, R.L., Ziemer, R.E., and Borth, D.E., Introduction to Spread-Spectrum Communications, New Jersey: Prentice Hall, 1995.
[39] Torres, W.P., Oppenheim, A.V., and Rosales, R.R., Generalized Frequency Modulation, IEEE Trans. Circ. Syst., 2001, vol. 48, no. 12, pp. 1405–1412. · Zbl 0999.94512 · doi:10.1109/TCSI.2001.972847
[40] Special issue ”Chaos Control and Synchronization,” IEEE Trans. Circ. Syst., Kennedy, M. and Ogorzalek, M., Eds., 1977, vol. 44, no. 10.
[41] Special issue on Applications of Chaos in Modern Communication Systems, IEEE Trans. Circ. Syst., Kocarev, L., Maggio, G.M., Ogorzalek, M., et al., Eds., 2001. vol. 48, no. 12. · Zbl 0991.00029
[42] Iñarrea, M. and Lanchares, V., Chaos in the Reorientation Process of a Dual-spin Spacecraft with Time-dependent Moments of Inertia, Int. J. Bifurc. Chaos, 2000, vol. 10, no. 5, pp. 997–1018. · Zbl 1090.70512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.