Warnaar, S. Ole; Zudilin, Wadim Dedekind’s \(\eta \)-function and Rogers-Ramanujan identities. (English) Zbl 1234.05040 Bull. Lond. Math. Soc. 44, No. 1, 1-11 (2012). Summary: We prove a \(q\)-series identity that generalizes Macdonald’s \(A_{2n}^{(2)} \eta \)-function identity and the Rogers-Ramanujan identities. We conjecture our result to generalize even further to also include the Andrews-Gordon identities. Cited in 1 ReviewCited in 16 Documents MSC: 05A19 Combinatorial identities, bijective combinatorics 05E05 Symmetric functions and generalizations 11F20 Dedekind eta function, Dedekind sums 33D67 Basic hypergeometric functions associated with root systems Keywords:Andrews-Gordon identities; Macdonald’s \(A_{2n}^{(2)} \eta \)-function identity PDF BibTeX XML Cite \textit{S. O. Warnaar} and \textit{W. Zudilin}, Bull. Lond. Math. Soc. 44, No. 1, 1--11 (2012; Zbl 1234.05040) Full Text: DOI arXiv OpenURL