## Transcendence of certain infinite sums involving rational functions.(English)Zbl 1234.11094

Author’s summary: “The main result of this paper is the method which shows how to find by a simple technique the sum of the infinite series of the form $\sum_{n=0}^\infty \frac{\alpha^n P(n)}{Q(n)}$ where $$P(n)$$ is a polynomial with algebraic coefficients, $$Q(n)$$ is a reduced polynomial with integer coefficients and $$\alpha\in\overline{\mathbb Q}^*$$. The connection between algebraic and transcendental infinite series and linear forms of logarithms via Baker’s theorem is included.”
Here the author uses only integration and some simple techniques to obtain some of the results of S. D. Adhikari, N. Saradha, T. N. Shorey and R. Tijdeman et al. [Indag. Math., New Ser. 12, 1–14 (2001; Zbl 0991.11043)].
Theorem. Let $$(a,w)\in\mathbb N^2$$, $$a\geq 2$$, $$\{b_v\}_{v=1}^w$$ be an increasing sequence of distinct positive integers and let $$b_v\leq a$$ for all $$v=1,\dots,w$$. Suppose that $$P(X)\in\overline{\mathbb Q}[X]$$ be a polynomial and $$\alpha\in\overline{\mathbb Q}^*$$. If
(1) $$|\alpha|>1$$, then the sum of the series
$S_{P(X)}:=\sum_{n=0}^\infty \frac{P(n)}{\alpha^n \prod_{v=1}^w (an+b_v)}$ is a transcendental or a computable number;
(2) $$|\alpha|=1$$, $$\deg P(n)< w+1$$, then the sum of the series (1) is a transcendental number or zero.
The author also observes an error in Theorem 1.5 of the paper of Adhikari et al. cited above, but as one of the authors of that paper (Saradha) pointed out in his MR review of the present paper “the error is only in the statement of Theorem 1.5 and not in the proof”. In his review Saradha also states a corrected version of that theorem.

### MSC:

 11J81 Transcendence (general theory)

### Keywords:

summation methods; infinite series; transcendence

Zbl 0991.11043
Full Text:

### References:

  Adhikari S. D., Saradha N., Shorey T. N., Tijdeman R.: Transcendental infinite sums. Indag. Math., New Ser. 12, no. 1, (2001), 1-14. · Zbl 0991.11043  Hancl J., Tijdeman R.: On the irrationality of Cantor series. J. reine angew. Math., vol. 571, (2004), 145-158. · Zbl 1049.11076  Hancl J., Tijdeman R.: On the rationality of Cantor and Ahmes series. Publicat. Math. 65, no. 3-4, (2004), 371-380. · Zbl 1102.11035  Hancl J., Tijdeman R.: On the irrationality of factorial series. Acta Arith. vol. 118, no. 4, (2005), 383-401. · Zbl 1088.11054  Hancl J., Tijdeman R.: On the irrationality of polynomial Cantor series. Acta Arith.)  Lehmer D. H.: Euler constants for arithmetical progressions. Acta Arithmetica 27, (1975), 125-142. · Zbl 0302.12003  Parshin A. N., Shafarevich I. R. (Eds.): Encyclopaedia of Mathematical Sciences. volume 44, Number Theory IV, Springer-Verlag Berlin Heidelberg, 1998.  Rektorys K., a spol.: Přehled užité matematiky. SNTL, Prague, 1963. · Zbl 0175.15801  Saradha N., Tijdeman R.: On the transcendence of infinite sums of values of rational functions. J. London Math. Soc. (3) 67 (2003), 580-592. · Zbl 1045.11051  Sebah P., Gourdon X.: Introduction to the Gamma Function. available under  Sondow J., Zudilin W.: Euler’s constant, q-logarithms, and formulas of Ramanujan and Gosper. available under · Zbl 1132.11056  Sury B., Tianming Wang, Feng-Zhen Zao: Identities involving Reciprocals of Binomial Coefficients. Journal of Integer Sequences, Vol. 7 (2004), 1-12. · Zbl 1069.11008  Tijdeman R.: Some applications of diophantine approximation. Proc. Millennium Conference on Number Theory, Urbana, May 2000, to appear. · Zbl 1045.11022  Tijdeman R., Pingzhi Y.: On the rationality of Cantor and Ahmes series. Indag. Mathem., N.S., 13 (3), (2002), 407-418. · Zbl 1018.11037  Waldschmidt M.: Transcendence de periodes: état des connaissances. African Diaspora Journal of Mathematics, Advances in Mathematics, Vol. 1 (2006), No. 2, available under
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.