×

Inner functions in Lipschitz, Besov, and Sobolev spaces. (English) Zbl 1234.30041

Summary: We study the membership of inner functions in Besov, Lipschitz, and Hardy-Sobolev spaces, finding conditions that enable an inner function to be in one of these spaces. Several results in this direction are given that complement or extend previous works on the subject from different authors. In particular, we prove that the only inner functions in either any of the Hardy-Sobolev spaces \(H_{\alpha}^p\) with \(1/p \leq \alpha < \infty\) or any of the Besov spaces \(B_{\alpha}^{p,q}\), with \(0 < p, q \leq \infty\) and \(\alpha \geq 1/p\), except when \(p = \infty\), \(\alpha = 0\), and \(2 < q \leq \infty\) or when \(0 < p < \infty\), \(q = \infty\), and \(\alpha = 1/p\) are finite Blaschke products. Our assertion for the spaces \(B_0^{\infty,q}\), \(0 < q \leq 2\), follows from the fact that they are included in the space VMOA. We prove also that for \(2 < q < \infty\), VMOA is not contained in \(B_0^{\infty,q}\) and that this space contains infinite Blaschke products. Furthermore, we obtain distinct results for other values of \(\alpha\) relating the membership of an inner function \(I\) in the spaces under consideration with the distribution of the sequences of preimages \(\{ I^{-1}(a)\}\), \(|a| < 1\). In addition, we include a section devoted to Blaschke products with zeros in a Stolz angle.

MSC:

30J05 Inner functions of one complex variable
30H25 Besov spaces and \(Q_p\)-spaces
30H10 Hardy spaces
30J10 Blaschke products
30J15 Singular inner functions of one complex variable
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Ahern, “The mean modulus and the derivative of an inner function,” Indiana University Mathematics Journal, vol. 28, no. 2, pp. 311-347, 1979. · Zbl 0415.30022 · doi:10.1512/iumj.1979.28.28022
[2] P. R. Ahern and D. N. Clark, “On inner functions with Hp-derivative,” The Michigan Mathematical Journal, vol. 21, pp. 115-127, 1974. · Zbl 0277.30027 · doi:10.1307/mmj/1029001255
[3] P. R. Ahern and D. N. Clark, “On inner functions with Bp derivative,” The Michigan Mathematical Journal, vol. 23, no. 2, pp. 107-118, 1976. · Zbl 0343.30023 · doi:10.1307/mmj/1029001659
[4] P. Ahern and M. Jevtić, “Duality and multipliers for mixed norm spaces,” The Michigan Mathematical Journal, vol. 30, no. 1, pp. 53-64, 1983. · Zbl 0538.30039 · doi:10.1307/mmj/1029002787
[5] P. Ahern and M. Jevtić, “Mean modulus and the fractional derivative of an inner function,” Complex Variables. Theory and Application, vol. 3, no. 4, pp. 431-445, 1984. · Zbl 0581.30029
[6] A. Gluchoff, “The mean modulus of a Blaschke product with zeroes in a nontangential region,” Complex Variables. Theory and Application, vol. 1, no. 4, pp. 311-326, 1983. · Zbl 0511.30021
[7] M. Jevtić, “A note on Blaschke products with zeroes in a nontangential region,” Canadian Mathematical Bulletin, vol. 32, no. 1, pp. 18-23, 1989. · Zbl 0679.30028 · doi:10.4153/CMB-1989-003-4
[8] H. O. Kim, “Derivatives of Blaschke products,” Pacific Journal of Mathematics, vol. 114, no. 1, pp. 175-190, 1984. · Zbl 0551.30029 · doi:10.2140/pjm.1984.114.175
[9] D. Protas, “Blaschke products with derivative in Hp and Bp,” The Michigan Mathematical Journal, vol. 20, pp. 393-396, 1973. · Zbl 0258.30032 · doi:10.1307/mmj/1029001157
[10] I. È. Verbitskiĭ, “Inner functions, Besov spaces and multipliers,” Doklady Akademii Nauk SSSR, vol. 276, no. 1, pp. 11-14, 1984 (Russian).
[11] A. Aleman and D. Vukotić, “On Blaschke products with derivatives in Bergman spaces with normal weights,” Journal of Mathematical Analysis and Applications, vol. 361, no. 2, pp. 492-505, 2010. · Zbl 1177.30077 · doi:10.1016/j.jmaa.2009.07.030
[12] D. Girela and J. Peláez, “On the membership in Bergman spaces of the derivative of a Blaschke product with zeros in a Stolz domain,” Canadian Mathematical Bulletin, vol. 49, no. 3, pp. 381-388, 2006. · Zbl 1115.30041 · doi:10.4153/CMB-2006-038-x
[13] D. Girela, J. Peláez, and D. Vukotić, “Integrability of the derivative of a Blaschke product,” Proceedings of the Edinburgh Mathematical Society, vol. 50, no. 3, pp. 673-687, 2007. · Zbl 1179.30032 · doi:10.1017/S0013091504001014
[14] D. Girela, J. Peláez, and D. Vukotić, “Interpolating Blaschke products: Stolz and tangential approach regions,” Constructive Approximation, vol. 27, no. 2, pp. 203-216, 2008. · Zbl 1183.30063 · doi:10.1007/s00365-006-0651-6
[15] M. Jevtić, “Blaschke products in Lipschitz spaces,” Proceedings of the Edinburgh Mathematical Society, vol. 52, no. 3, pp. 689-705, 2009. · Zbl 1177.30078 · doi:10.1017/S001309150700065X
[16] J. Peláez, “Sharp results on the integrability of the derivative of an interpolating Blaschke product,” Forum Mathematicum, vol. 20, no. 6, pp. 1039-1054, 2008. · Zbl 1159.30021 · doi:10.1515/FORUM.2008.046
[17] F. Pérez-González and J. Rättyä, “Inner functions in the Möbius invariant Besov-type spaces,” Proceedings of the Edinburgh Mathematical Society, vol. 52, no. 3, pp. 751-770, 2009. · Zbl 1179.30057 · doi:10.1017/S0013091507000818
[18] D. Protas, “Mean growth of the derivative of a Blaschke product,” Kodai Mathematical Journal, vol. 27, no. 3, pp. 354-359, 2004. · Zbl 1083.30033 · doi:10.2996/kmj/1104247356
[19] P. L. Duren, Theory of Hp Spaces, vol. 38 of Pure and Applied Mathematics, Academic Press, New York, NY, USA, 1970, Reprinted in Dover, Mineola, NY, USA, 2000. · Zbl 0215.20203
[20] J. B. Garnett, Bounded Analytic Functions, vol. 96 of Pure and Applied Mathematics, Academic Press, New York, NY, USA, 1981. · Zbl 0469.30024
[21] P. Duren and A. Schuster, Bergman Spaces, vol. 100 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 2004. · Zbl 1059.30001
[22] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, vol. 199 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2000. · Zbl 0955.32003
[23] T. M. Flett, “The dual of an inequality of Hardy and Littlewood and some related inequalities,” Journal of Mathematical Analysis and Applications, vol. 38, pp. 746-765, 1972. · Zbl 0246.30031 · doi:10.1016/0022-247X(72)90081-9
[24] D. Girela, M. Pavlović, and J. Peláez, “Spaces of analytic functions of Hardy-Bloch type,” Journal d’Analyse Mathématique, vol. 100, pp. 53-81, 2006. · Zbl 1173.30320 · doi:10.1007/BF02916755
[25] J. E. Littlewood and R. E. A. C. Paley, “Theorems on Fourier series and power series (II),” Proceedings London Mathematical Society, vol. s2-42, no. 1, pp. 52-89, 1937. · JFM 63.0214.03 · doi:10.1112/plms/s2-42.1.52
[26] S. A. Vinogradov, “Multiplication and division in the space of analytic functions with an area-integrable derivative, and in some related spaces,” Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI), vol. 222, no. 23, pp. 45-77, 308, 1995 (Russian), English translation in Journal of Mathematical Sciences, vol. 87, no. 5, pp. 3806-3827, 1997. · Zbl 0909.30029
[27] I. È. Verbitskiĭ, “On Taylor coefficients and Lp-moduli of continuity of Blaschke products,” Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI), vol. 107, pp. 27-35, 228, 1982 (Russian), Investigations on linear operators and the theory of functions, X.
[28] P. S. Bourdon, J. H. Shapiro, and W. T. Sledd, “Fourier series, mean Lipschitz spaces, and bounded mean oscillation,” in Analysis at Urbana, Vol. I (Urbana, IL, 1986-1987), vol. 137 of London Math. Soc. Lecture Note Ser., pp. 81-110, Cambridge University Press, Cambridge, UK, 1989. · Zbl 0672.42003
[29] C. J. Bishop, “Bounded functions in the little Bloch space,” Pacific Journal of Mathematics, vol. 142, no. 2, pp. 209-225, 1990. · Zbl 0652.30024 · doi:10.2140/pjm.1990.142.209
[30] D. Sarason, “Functions of vanishing mean oscillation,” Transactions of the American Mathematical Society, vol. 207, pp. 391-405, 1975. · Zbl 0319.42006 · doi:10.2307/1997184
[31] J. M. Anderson, “On division by inner factors,” Commentarii Mathematici Helvetici, vol. 54, no. 2, pp. 309-317, 1979. · Zbl 0411.30020 · doi:10.1007/BF02566274
[32] D. Girela, “Analytic functions of bounded mean oscillation,” in Complex Function Spaces (Mekrijärvi, 1999), vol. 4 of Univ. Joensuu Dept. Math. Rep. Ser., pp. 61-170, The University of Joensuu, Joensuu, Finland, 2001. · Zbl 0981.30026
[33] A. B. Aleksandrov, J. M. Anderson, and A. Nicolau, “Inner functions, Bloch spaces and symmetric measures,” Proceedings of the London Mathematical Society, vol. 79, no. 2, pp. 318-352, 1999. · Zbl 1085.46020 · doi:10.1112/S002461159901196X
[34] K. H. Zhu, Operator Theory in Function Spaces, vol. 139 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1990.
[35] A. Baernstein, II, D. Girela, and J. Peláez, “Univalent functions, Hardy spaces and spaces of Dirichlet type,” Illinois Journal of Mathematics, vol. 48, no. 3, pp. 837-859, 2004. · Zbl 1063.30014
[36] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 1988, Reprint of the 1952 edition. · Zbl 0634.26008
[37] P. Ahern, “The Poisson integral of a singular measure,” Canadian Journal of Mathematics, vol. 35, no. 4, pp. 735-749, 1983. · Zbl 0553.28006 · doi:10.4153/CJM-1983-042-0
[38] M. Jevtić, “On Blaschke products in Besov spaces,” Journal of Mathematical Analysis and Applications, vol. 149, no. 1, pp. 86-95, 1990. · Zbl 0699.30026 · doi:10.1016/0022-247X(90)90287-P
[39] M. Mateljević and M. Pavlović, “On the integral means of derivatives of the atomic function,” Proceedings of the American Mathematical Society, vol. 86, no. 3, pp. 455-458, 1982. · Zbl 0524.30022 · doi:10.2307/2044447
[40] A. A. Goldberg, “On an inequality connected with logarithmic convex functions,” Dopovidi Akademii Nauk Ukrainskoi RSR, vol. 1957, pp. 227-230, 1957. · Zbl 0077.28602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.