zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive fuzzy bilinear observer based synchronization design for generalized Lorenz system. (English) Zbl 1234.34012
Summary: This Letter proposes an adaptive fuzzy bilinear observer (FBO) based synchronization design for generalized Lorenz system (GLS). The GLS can be described to TS fuzzy bilinear generalized Lorenz model (FBGLM) with their states immeasurable and their parameters unknown. We design an adaptive FBO based on TS FBGLM for synchronization. Lyapunov theory is employed to guarantee the stability of error dynamic system via linear matrix equalities (LMIs) and to derive the adaptive laws to estimate unknown parameters. Numerical example is given to demonstrate the validity of our proposed adaptive FBO approach for synchronization.

34A34Nonlinear ODE and systems, general
93C40Adaptive control systems
37B25Lyapunov functions and stability; attractors, repellers
34A07Fuzzy differential equations
Full Text: DOI
[1] Carroll, T. L.; Pecora, L. M.: IEEE trans. Circuits systems I, IEEE trans. Circuits systems I 38, 453 (1991)
[2] Salarieh, H.; Alasty, A.: Commun. nonlinear sci. Numer. simul., Commun. nonlinear sci. Numer. simul. 14, 508 (2009)
[3] Lin, J. S.; Yan, J. J.: Nonlinear anal.: real world appl., Nonlinear anal.: real world appl. 10, 1151 (2009)
[4] Yau, H. T.: Mech. syst. Signal process., Mech. syst. Signal process. 22, 408 (2008)
[5] Haeri, M.; Tavazoei, M. S.; Naseh, M. R.: Chaos solitons fractals, Chaos solitons fractals 33, 1230 (2007)
[6] Hwang, E. J.; Hyun, C. H.; Kim, E.; Park, M.: Phys. lett. A, Phys. lett. A 373, 1935 (2009)
[7] Wang, Y. W.; Guan, Z. H.; Wang, H. O.: Phys. lett. A, Phys. lett. A 320, 154 (2003)
[8] Celikovsky, S.; Vanecek, A.: Kybernetika, Kybernetika 30, 403 (1999)
[9] Vanecek, A.; Celikovsky, S.: Control systems: from linear analysis to synthesis of chaos, (1996) · Zbl 0874.93006
[10] Lian, K. Y.; Liu, P.: IEEE trans. Circuits systems, IEEE trans. Circuits systems 47, 1418 (2000)
[11] Liao, X.; Xu, F.; Wang, P.; Yu, P.: Chaos solitons fractals, Chaos solitons fractals 39, 2491 (2009)
[12] Liang, X.; Zhang, J.; Xia, X.: IEEE trans. Automat. control, IEEE trans. Automat. control 53, 1740 (2008)
[13] Maghsoodi, Y.: Control theory appl. IEE proc. D, Control theory appl. IEE proc. D 136, 127 (1989)