Hegazi, A. S.; Matouk, A. E. Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system. (English) Zbl 1234.34036 Appl. Math. Lett. 24, No. 11, 1938-1944 (2011). Summary: Some dynamical behaviors are studied in the fractional order hyperchaotic Chen system which shows hyperchaos with order less than 4. The analytical conditions for achieving synchronization in this system via linear control are investigated theoretically by using the Laplace transform theory. Routh-Hurwitz conditions and numerical simulations are used to show the agreement between the theoretical and numerical results. To the best of our knowledge this is the first example of a hyperchaotic system synchronizable just in the fractional order case, using a specific choice of controllers. Cited in 22 Documents MSC: 34D06 Synchronization of solutions to ordinary differential equations 26A33 Fractional derivatives and integrals 34C28 Complex behavior and chaotic systems of ordinary differential equations 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 37N35 Dynamical systems in control Keywords:fractional order; hyperchaotic Chen system; Routh-Hurwitz conditions; hyperchaos; synchronization PDF BibTeX XML Cite \textit{A. S. Hegazi} and \textit{A. E. Matouk}, Appl. Math. Lett. 24, No. 11, 1938--1944 (2011; Zbl 1234.34036) Full Text: DOI References: [1] Butzer, P. L.; Westphal, U., An Introduction to Fractional Calculus (2000), World Scientific: World Scientific Singapore · Zbl 0987.26005 [2] Sun, H. H.; Abdelwahab, A. A.; Onaral, B., IEEE Trans. Automat. Control, 29, 441 (1984) [3] Ahmed, E.; Elgazzar, A. S., Physica A, 379, 607 (2007) [4] El-Sayed, A. M.A.; El-Mesiry, A. E.M.; El-Saka, H. A.A., Appl. Math. Lett., 20, 817 (2007) [5] Caputo, M., Geophys. J. R. Astron. Soc., 13, 529 (1967) [6] Adda, F. Ben, J. Fract. Calc., 11, 21 (1997) [7] Podlubny, I., Fract. Calc. Appl. Anal., 5, 367 (2002) [8] Matouk, A. E., Math. Probl. Eng., 2009 (2009), Article ID 572724, 11 pages [9] Li, C.; Liao, X.; Wong, K. W., Chaos Solitons Fractals, 23, 183 (2005) [10] Li, C.; Chen, G., Physica A, 341, 55 (2004) [12] Wang, X. Y.; Song, J. M., Commun. Nonlinear Sci. Numer. Simul., 14, 3351 (2009) [13] Deng, H.; Li, T.; Wang, Q.; Li, H., Chaos Solitons Fractals, 41, 962 (2009) [14] Matouk, A. E., Phys. Lett. A, 373, 2166 (2009) · Zbl 1229.34099 [16] Diethelm, K.; Ford, N. J., J. Math. Anal. Appl., 265, 229 (2002) [17] Diethelm, K.; Ford, N. J.; Freed, A. D., Nonlinear Dynam., 29, 3 (2002) [18] Diethelm, K., Electron. Trans. Numer. Anal., 5, 1 (1997) [19] Yan, Z., Appl. Math. Comput., 168, 1239 (2005) [20] Abarbanel, H. D.I., Analysis of Observed Chaotic Data (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0875.70114 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.