×

\(L^p\)-\(L^q\) estimates for electromagnetic Helmholtz equation. (English) Zbl 1234.35047

Summary: In space dimension \(n\geq 3\), we consider the electromagnetic Schrödinger Hamiltonian \(H=(\nabla -iA(x))^2-V\) and the corresponding Helmholtz equation \[ (\nabla-iA(x))^2u+u-V(x)u=f\quad \text{in }\mathbb{R}^n. \] We extend the well-known \(L^p\)-\(L^q\) estimates for the solution of the free Helmholtz equation to the case when the electromagnetic Hamiltonian \(H\) is considered.

MSC:

35B45 A priori estimates in context of PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

References:

[1] Agmon, S., Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, 2, 2, 151-218 (1975) · Zbl 0315.47007
[2] Agmon, S.; Hörmander, L., Asymptotic properties of solutions of differential equations with simple characteristics, J. Anal. Math., 30, 1-38 (1976) · Zbl 0335.35013
[3] Burq, N.; Planchon, F.; Stalker, J. G.; Tahvildar-Zadeh, A. S., Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203, 519-549 (2003) · Zbl 1030.35024
[4] Carbery, A.; Soria, F., Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an \(L^2\)-localisation principle, Rev. Mat. Iberoamericana, 4, 2, 319-337 (1988) · Zbl 0692.42001
[5] DʼAncona, P.; Fanelli, L.; Vega, L.; Visciglia, N., Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258, 3227-3240 (2010) · Zbl 1188.81061
[6] Fanelli, L., Non-trapping magnetic fields and Morrey-Campanato estimates for Schrödinger operators, J. Math. Anal. Appl., 357, 1-14 (2009) · Zbl 1170.35374
[7] S. Gutiérrez, Un problema de contorno para la ecuación de Ginzburg-Landau, PhD thesis, Basque Country University, 2000.; S. Gutiérrez, Un problema de contorno para la ecuación de Ginzburg-Landau, PhD thesis, Basque Country University, 2000.
[8] Gutiérrez, S., Non trivial \(L^q\) solutions to the Ginzburg-Landau equation, Math. Ann., 328, 1-25 (2004) · Zbl 1109.35045
[9] Ikebe, T.; Saito, Y., Limiting absorption method and absolute continuity for the Schrödinger operator, J. Math. Kyoto Univ., 12, 513-542 (1972) · Zbl 0257.35022
[10] Kenig, C. E.; Ruiz, A.; Sogge, D., Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55, 329-347 (1987) · Zbl 0644.35012
[11] Kenig, C. E.; Ponce, G.; Vega, L., Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, 10, 255-288 (1993) · Zbl 0786.35121
[12] Regbaoui, R., Strong uniqueness for second order differential operators, J. Differential Equations, 141, 201-217 (1997) · Zbl 0887.35040
[13] Ruiz, A.; Vega, L., On local regularity of Schrödinger equations, Int. Math. Res. Not., 13-27 (1993) · Zbl 0812.35016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.