zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new five-term simple chaotic attractor. (English) Zbl 1234.37030
Summary: A new chaotic attractor is presented with only five terms in three simple differential equations having fewer terms and simpler than those of existing seven-term or six-term chaotic attractors. Basic dynamical properties of the new attractor are demonstrated in terms of equilibria, Jacobian matrices, non-generalized Lorenz systems, Lyapunov exponents, a dissipative system, a chaotic waveform in time domain, a continuous frequency spectrum, Poincaré maps, bifurcations and forming mechanisms of its compound structures.

37D45Strange attractors, chaotic dynamics
37J20Bifurcation problems (finite-dimensional Hamiltonian etc. systems)
37M05Simulation (dynamical systems)
Full Text: DOI
[1] Lorenz, E. N.: J. atmos. Sci., J. atmos. Sci. 20, 130 (1963)
[2] Rössler, O. E.: Phys. lett. A, Phys. lett. A 57, No. 5, 397 (1976)
[3] Chen, G.; Ueta, T.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 9, No. 7, 1465 (1999)
[4] Lü, J.; Chen, G.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 12, No. 3, 659 (2002)
[5] Liu, C.; Liu, T.; Liu, L.; Liu, K.: Chaos solitons fractals, Chaos solitons fractals 22, 1031 (2004)
[6] Zhou, W.; Xu, Y.; Lu, H.; Pan, L.: Phys. lett. A, Phys. lett. A 372, 5773 (2008)
[7] Sprott, J. C.: Phys. rev. E, Phys. rev. E 50, No. 2, R647 (1994)
[8] Sprott, J. C.: Phys. lett. A, Phys. lett. A 228, 271 (1997)
[9] Toncharoen, C.; Srisuchinwong, B.: Ecti-con, Ecti-con 2009, No. 1, 407 (2009)
[10] Ueta, T.; Chen, G.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 10, 1917 (2000)
[11] Wang, X. F.; Chen, G.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 10, 549 (2000)
[12] Celikovsky, S.; Chen, G.: Chaos solitons fractals, Chaos solitons fractals 26, 1271 (2005)
[13] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A.: Physica D, Physica D 16, 285 (1985)
[14] Lu, J.; Chen, G.; Zhang, S.: Chaos solitons fractals, Chaos solitons fractals 14, 669 (2002)