zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Semi-direct sums of Lie algebras and continuous integrable couplings. (English) Zbl 1234.37049
Summary: A relation between semi-direct sums of Lie algebras and integrable couplings of continuous soliton equations is presented, and correspondingly, a feasible way to construct integrable couplings is furnished. A direct application to the AKNS spectral problem leads to a novel hierarchy of integrable couplings of the AKNS hierarchy of soliton equations. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards complete classification of integrable systems.

37K30Relations of infinite-dimensional systems with algebraic structures
17B80Applications of Lie algebras to integrable systems
Full Text: DOI
[1] Ma, W. X.; Fuchssteiner, B.: Chaos solitons fractals. 7, 1227 (1996)
[2] Ma, W. X.: Methods appl. Anal.. 7, 21 (2000)
[3] Ma, W. X.; Fuchssteiner, B.: Phys. lett. A. 213, 49 (1996) · Zbl 0863.35106
[4] Ma, W. X.: Phys. lett. A. 316, 72 (2003)
[5] Ma, W. X.: J. math. Phys.. 46, 033507 (2005)
[6] Guo, F. G.; Zhang, Y.: J. math. Phys.. 44, 5793 (2003)
[7] Zhang, Y.: Chaos solitons fractals. 21, 305 (2004)
[8] Ma, W. X.: J. math. Phys.. 43, 1408 (2002)
[9] Frappat, L.; Sciarrino, A.; Sorba, P.: Dictionary on Lie algebras and superalgebras. (2000) · Zbl 0965.17001
[10] Sakovich, S. Yu.: J. nonlin. Math. phys.. 5, 230 (1998)
[11] Sakovich, S. Yu.: J. nonlin. Math. phys.. 6, 255 (1999)
[12] Ma, W. X.; Zhou, R. G.: Physica A. 296, 60 (2001)
[13] Fan, E. G.; Zhang, Y.: Chaos solitons fractals. 25, 425 (2005)
[14] Tu, G. Z.: J. phys. A: math. Gen.. 22, 2375 (1989)
[15] Ma, W. X.: Chinese ann. Math. ser. A. 13, 115 (1992)
[16] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H.: Studies appl. Math.. 53, 249 (1974)
[17] Xu, X. X.: Chaos solitons fractals. 15, 475 (2003)
[18] Olver, P. J.: Applications of Lie groups to differential equations. Graduate texts in mathematics 107 (1986)
[19] Ma, W. X.; Strampp, W.: Phys. lett. A. 185, 277 (1994)
[20] Ma, W. X.: J. phys. A: math. Gen.. 26, 2573 (1993)
[21] Ma, W. X.: J. math. Phys.. 33, 2464 (1992)