##
**Multiple-set split feasibility problems for asymptotically strict pseudocontractions.**
*(English)*
Zbl 1234.47047

Summary: We introduce an iterative method for solving the multiple-set split feasibility problems for asymptotically strict pseudocontractions in infinite-dimensional Hilbert spaces, and, by using the proposed iterative method, we improve and extend some recent results given by some authors.

### MSC:

47J25 | Iterative procedures involving nonlinear operators |

47H09 | Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. |

PDF
BibTeX
XML
Cite

\textit{S.-S. Chang} et al., Abstr. Appl. Anal. 2012, Article ID 491760, 12 p. (2012; Zbl 1234.47047)

Full Text:
DOI

### References:

[1] | Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product space,” Numerical Algorithms, vol. 8, no. 2-4, pp. 221-239, 1994. · Zbl 0828.65065 |

[2] | C. Byrne, “Iterative oblique projection onto convex sets and the split feasibility problem,” Inverse Problems, vol. 18, no. 2, pp. 441-453, 2002. · Zbl 0996.65048 |

[3] | Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, “A unified approach for inversion problems in intensity-modulated radiation therapy,” Physics in Medicine and Biology, vol. 51, no. 10, pp. 2353-2365, 2006. |

[4] | Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, “The multiple-sets split feasibility problem and its applications for inverse problem and its applications,” Inverse Problems, vol. 21, no. 6, pp. 2071-2084, 2005. · Zbl 1089.65046 |

[5] | Y. Censor X, A. Motova, and A. Segal, “Perturbed projections and subgradient projections for the multiple-sets split feasibility problem,” Journal of Mathematical Analysis and Applications, vol. 327, no. 2, pp. 1244-1256, 2007. · Zbl 1253.90211 |

[6] | H. K. Xu, “A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem,” Inverse Problems, vol. 22, no. 6, pp. 2021-2034, 2006. · Zbl 1126.47057 |

[7] | Q. Yang, “The relaxed CQ algorithm solving the split feasibility problem,” Inverse Problems, vol. 20, no. 4, pp. 1261-1266, 2004. · Zbl 1066.65047 |

[8] | J. Zhao and Q. Yang, “Several solution methods for the split feasibility problem,” Inverse Problems, vol. 21, no. 5, pp. 1791-1799, 2005. · Zbl 1080.65035 |

[9] | K. Goebel and W. A. Kirk, “A fixed point theorem for asymptotically nonexpansive mappings,” Proceedings of the American Mathematical Society, vol. 35, pp. 171-174, 1972. · Zbl 0256.47045 |

[10] | T. H. Kim and H. K. Xu, “Convergence of the modified Mann’s iteration method for asymptotically strict pseudo-contractions,” Nonlinear Analysis. Theory, Methods & Applications, vol. 68, no. 9, pp. 2828-2836, 2008. · Zbl 1220.47100 |

[11] | K. Aoyama, W. Kimura, W. Takahashi, and M. Toyoda, “Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space,” Nonlinear Analysis. Theory, Methods & Applications, vol. 67, no. 8, pp. 2350-2360, 2007. · Zbl 1130.47045 |

[12] | A. Moudafi, “The split common fixed-point problem for demicontractive mappings,” Inverse Problems, vol. 26, no. 5, Article ID 055007, 6 pages, 2010. · Zbl 1219.90185 |

[13] | H. K. Xu, “Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces,” Inverse Problems, vol. 26, no. 10, Article ID 105018, 17 pages, 2010. · Zbl 1213.65085 |

[14] | Y. Censor and A. Segal, “The split common fixed point problem for directed operators,” Journal of Convex Analysis, vol. 16, no. 2, pp. 587-600, 2009. · Zbl 1189.65111 |

[15] | E. Masad and S. Reich, “A note on the multiple-set split convex feasibility problem in Hilbert space,” Journal of Nonlinear and Convex Analysis, vol. 8, no. 3, pp. 367-371, 2007. · Zbl 1171.90009 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.