Ho, Hai Nguyen Dang; Schwartz, Lionel Realizing a complex of unstable modules. (English) Zbl 1234.55012 Proc. Japan Acad., Ser. A 87, No. 5, 83-87 (2011). In an earlier paper [Adv. Math. 225, No. 3, 1431–1460 (2010; Zbl 1200.55026)] the authors, along with Tran Ngoc Nam, constructed a certain minimal injective resolution of the mod 2 cohomology of a Thom spectrum. In this paper a topological realization of this resolution is constructed, in the form of a family of cofibrations which, after applying mod 2 cohomology, give a family of short exact sequences that can be spliced together to give the desired resolution. This suggests that certain dual Brown-Gitler spectra should also be realizable geometrically (not just homotopically). Reviewer: Martin D. Crossley (Swansea) Cited in 1 Document MSC: 55S10 Steenrod algebra 55T15 Adams spectral sequences 55P42 Stable homotopy theory, spectra Keywords:unstable module; Brown-Gitler spectrum; Adams spectral sequence Citations:Zbl 1200.55026 PDFBibTeX XMLCite \textit{H. N. D. Ho} and \textit{L. Schwartz}, Proc. Japan Acad., Ser. A 87, No. 5, 83--87 (2011; Zbl 1234.55012) Full Text: DOI arXiv References: [1] P. Goerss, J. Lannes and F. Morel, Vecteurs de Witt non commutatifs et représentabilité de l’homologie modulo \(p\), Invent. Math. 108 (1992), no. 1, 163-227. · Zbl 0769.55011 · doi:10.1007/BF02100603 [2] D. J. Hunter and N. J. Kuhn, Characterizations of spectra with \(\mathcal{U}\)-injective cohomology which satisfy the Brown-Gitler property, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1171-1190. · Zbl 0929.55011 · doi:10.1090/S0002-9947-99-02375-2 [3] J. Lannes and L. Schwartz, Sur la structure des \(A\)-modules instables injectifs, Topology 28 (1989), no. 2, 153-169. · Zbl 0683.55016 · doi:10.1016/0040-9383(89)90018-9 [4] J. Lannes and S. Zarati, Sur les \(\mathcal{U}\)-injectifs, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 303-333. · Zbl 0608.18006 [5] S. A. Mitchell and S. B. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), no. 3, 285-298. · Zbl 0526.55010 · doi:10.1016/0040-9383(83)90014-9 [6] N. D. H. Hai, L. Schwartz and T. N. Nam, Résolution de certains modules instables et fonction de partition de Minc, C. R. Math. Acad. Sci. Paris 347 (2009), no. 11-12, 599-602. · Zbl 1170.18008 · doi:10.1016/j.crma.2009.04.009 [7] N. D. H. Hai, L. Schwartz and T. N. Nam, La fonction génératrice de Minc et une “conjecture de Segal” pour certains spectres de Thom, Adv. Math. 225 (2010), no. 3, 1431-1460. · Zbl 1200.55026 · doi:10.1016/j.aim.2010.03.029 [8] L. Schwartz, Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture , Chicago Lectures in Mathematics, Univ. Chicago Press, Chicago, IL, 1994. · Zbl 0871.55001 [9] R. Steinberg, Prime power representations of finite linear groups, Canad. J. Math. 8 (1956), 580-591. · Zbl 0073.01502 · doi:10.4153/CJM-1956-063-3 [10] S. Takayasu, On stable summands of Thom spectra of \(B(\mathbf{Z}/2)^{n}\) associated to Steinberg modules, J. Math. Kyoto Univ. 39 (1999), no. 2, 377-398. · Zbl 1002.55006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.