A class of covariate-dependent spatiotemporal covariance functions for the analysis of daily ozone concentration. (English) Zbl 1234.62125

Summary: In geostatistics, it is common to model spatially distributed phenomena through an underlying stationary and isotropic spatial process. However, these assumptions are often untenable in practice because of the influence of local effects in the correlation structure. Therefore, it has been of prolonged interest in the literature to provide flexible and effective ways to model nonstationarity in the spatial effects. Arguably, due to the local nature of the problem, we might envision that the correlation structure would be highly dependent on local characteristics of the domain of study, namely, the latitude, longitude and altitude of the observation sites, as well as other locally defined covariate information. We provide a flexible and computationally feasible way for allowing the correlation structure of the underlying processes to depend on local covariate information. We discuss the properties of the induced covariance functions and methods to assess its dependence on local covariate information. The proposed method is used to analyze daily ozone in the southeast United States.


62M30 Inference from spatial processes
62P12 Applications of statistics to environmental and related topics
86A32 Geostatistics
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI arXiv


[1] Adler, R. J. (1981). The Geometry of Random Fields . Wiley, London. · Zbl 0478.60059
[2] Banerjee, S. and Gelfand, A. E. (2003). On smoothness properties of spatial processes. J. Multivariate Anal. 84 85-100. · Zbl 1012.60041
[3] Banerjee, S., Gelfand, A. E. and Sirmans, C. F. (2003). Directional rates of change under spatial process models. J. Amer. Statist. Assoc. 98 946-954. · Zbl 1045.62096
[4] Berrocal, V. J., Gelfand, A. E. and Holland, D. M. (2010). A spatio-temporal downscaler for output from numerical models. J. Agric. Biol. Environ. Stat. 15 176-197. · Zbl 1306.62243
[5] Carroll, R., Chen, R., George, E., Li, T., Newton, H., Schmiediche, H. and Wang, N. (1997). Ozone exposure and population density in Harris County, Texas. J. Amer. Statist. Assoc. 92 392-404. · Zbl 0890.62078
[6] CFR (2008). 40 CFR Parts 50 and 58, National Ambient Air Quality Standards for Ozone, Final rule.
[7] Cooley, D., Nychka, D. and Naveau, P. (2007). Bayesian spatial modeling of extreme precipitation return levels. J. Amer. Statist. Assoc. 102 824-840. · Zbl 1469.62389
[8] Cressie, N. and Huang, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. J. Amer. Statist. Assoc. 94 1330-1340. · Zbl 0999.62073
[9] Dou, Y., Le, N. D. and Zidek, J. V. (2010). Modeling hourly ozone concentration fields. Ann. Appl. Stat. 4 1183-1213. · Zbl 1202.62169
[10] Fuentes, M. (2002). Spectral methods for nonstationary spatial processes. Biometrika 89 197-210. · Zbl 0997.62073
[11] Gelfand, A. E., Kim, H.-J., Sirmans, C. F. and Banerjee, S. (2003). Spatial modeling with spatially varying coefficient processes. J. Amer. Statist. Assoc. 98 387-396. · Zbl 1041.62041
[12] Gilleland, E. and Nychka, D. (2005). Statistical models for monitoring and regulating ground-level ozone. Environmetrics 16 535-546.
[13] Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data. J. Amer. Statist. Assoc. 97 590-600. · Zbl 1073.62593
[14] Guttorp, P., Meiring, W. and Sampson, P. D. (1994). A space-time analysis of ground-level ozone data. Environmetrics 5 241-254.
[15] Higdon, D., Swall, J. and Kern, J. (1999). Non-stationary spatial modeling. In Bayesian Statistics 6-Proceedings of the Sixth Valencia Meeting (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 761-768. Clarendon, Oxford. · Zbl 0982.62079
[16] Huang, H. C. and Hsu, N. J. (2004). Modeling transport effects on ground-level ozone using a non-stationary space-time model. Environmetrics 15 251-268.
[17] Huerta, G., Sansó, B. and Stroud, J. R. (2004). A spatiotemporal model for Mexico City ozone levels. J. R. Stat. Soc. Ser. C. Appl. Stat. 53 231-248. · Zbl 1111.62372
[18] Kent, J. T. (1989). Continuity properties for random fields. Ann. Probab. 17 1432-1440. · Zbl 0685.60054
[19] Li, Y., Tang, H. and Lin, X. (2009). Spatial linear mixed models with covariate measurement errors. Statist. Sinica 19 1077-1093. · Zbl 1166.62039
[20] Lopes, H. F., Gamerman, D. and Salazar, E. (2011). Generalized spatial dynamic factor models. Comput. Statist. Data Anal. 55 1319-1330. · Zbl 1328.65032
[21] Lopes, H. F., Salazar, E. and Gamerman, D. (2008). Spatial dynamic factor analysis. Bayesian Anal. 3 759-792. · Zbl 1330.62356
[22] McMillan, N., Bortnick, S. M., Irwin, M. E. and Berliner, L. M. (2005). A hierarchical Bayesian model to estimate and forecast ozone through space and time. Atmospheric Environment 39 1373-1382.
[23] Meiring, W., Guttorp, P. and Sampson, P. D. (1998). Space-time estimation of grid-cell hourly ozone levels for assessment of a deterministic model. Environ. Ecol. Stat. 5 197-222.
[24] Nail, A. J., Hughes-Oliver, J. M. and Monahan, J. F. (2010). Quantifying local creation and regional transport using a hierarchical space-time model of ozone as a function of observed NOx, a latent space-time VOC process, emissions, and meteorology. J. Agric. Biol. Environ. Stat. 16 17-44. · Zbl 1306.62315
[25] Paciorek, C. J. (2010). The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Statist. Sci. 25 107-125. · Zbl 1328.62596
[26] Paciorek, C. J. and Schervish, M. J. (2006). Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17 483-506.
[27] Paciorek, C. J., Yanosky, J. D., Puett, R. C., Laden, F. and Suh, H. H. (2009). Practical large-scale spatio-temporal modeling of particulate matter concentrations. Ann. Appl. Statist. 3 370-397. · Zbl 1160.62093
[28] Reich, B. J., Hodges, J. S. and Zadnik, V. (2006). Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics 62 1197-1206. · Zbl 1114.62124
[29] Sahu, S. K., Gelfand, A. E. and Holland, D. M. (2007). High-resolution space-time ozone modeling for assessing trends. J. Amer. Statist. Assoc. 102 1221-1234. · Zbl 1332.86014
[30] Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary covariance structure. J. Amer. Statist. Assoc. 87 108-119.
[31] Schmidt, A. M., Guttorp, P. and O’Hagan, A. (2011). Considering covariates in the covariance structure of spatial processes. Environmetrics 22 487-500.
[32] Schmidt, A. M. and O’Hagan, A. (2003). Bayesian inference for nonstationary spatial covariance structures via spatial deformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 743-775. · Zbl 1063.62034
[33] Schmidt, A. M. and Rodríguez, M. A. (2011). Modelling multivariate counts varying continuously in space. In Bayesian Statistics 9- Proceedings of the Sixth Valencia Meeting (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.). Clarendon, Oxford. · Zbl 1250.62003
[34] Stein, M. L. (2005). Space-time covariance functions. J. Amer. Statist. Assoc. 100 310-321. · Zbl 1117.62431
[35] Stein, M. L. and Fang, D. (1997). Discussion of “Ozone exposure and population density in Harris County, Texas,” by R. J. Carroll, et al. J. Amer. Statist. Assoc. 92 408-411.
[36] Wakefield, J. (2007). Disease mapping and spatial regression with count data. Biostatistics 8 158-183. · Zbl 1213.62178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.