×

Modeling of the HIV infection epidemic in the Netherlands: a multi-parameter evidence synthesis approach. (English) Zbl 1234.62140

Summary: Multi-parameter evidence synthesis (MPES) is receiving growing attention from the epidemiological community as a coherent and flexible analytical framework to accommodate a disparate body of evidence available to inform disease incidence and prevalence estimation. MPES is the statistical methodology adopted by the Health Protection Agency in the UK for its annual national assessment of the HIV epidemic, and is acknowledged by the World Health Organization and UNAIDS as a valuable technique for the estimation of adult HIV prevalence from surveillance data. This paper describes the results of utilizing a Bayesian MPES approach to model HIV prevalence in the Netherlands at the end of 2007, using an array of field data from different study designs on various population risk subgroups and with a varying degree of regional coverage. Auxiliary data and expert opinions were additionally incorporated to resolve issues arising from biased, insufficient or inconsistent evidence. This case study offers a demonstration of the ability of MPES to naturally integrate and critically reconcile disparate and heterogeneous sources of evidence, while producing reliable estimates of HIV prevalence used to support public health decision-making.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62N02 Estimation in survival analysis and censored data
62F15 Bayesian inference
92C60 Medical epidemiology
65C60 Computational problems in statistics (MSC2010)

Software:

WinBUGS; UNAIDS
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Ades, A. E. (2003). A chain of evidence with mixed comparisons: Models for multi-parameter synthesis and consistency of evidence. Stat. Med. 22 2995-3016.
[2] Ades, A. E. and Cliffe, S. (2002). Markov Chain Monte Carlo estimation of a multiparameter decision model: Consistency of evidence and the accurate assessment of uncertainty. Medical Decision Making 22 359-371.
[3] Ades, A. E. and Sutton, A. J. (2006). Multiparameter evidence synthesis in epidemiology and medical decision-making: Current approaches. J. R. Stat. Soc. Ser. A Stat. Soc. 169 5-35.
[4] Ades, A. E., Sculpher, M., Sutton, A., Abrams, K., Cooper, N., Welton, N. and Lu, G. (2006). Bayesian methods for evidence synthesis in cost-effectiveness analysis. Pharmacoeconomics 24 1-19.
[5] Ades, A. E., Welton, N. J., Caldwell, D., Price, M., Goubar, A. and Lu, G. (2008). Multiparameter evidence synthesis in epidemiology and medical decision-making. Journal of Health Services Research & Policy 13 12-22.
[6] Alkema, L., Raftery, A. E. and Clark, S. J. (2007). Probabilistic projections of HIV prevalence using Bayesian melding. Ann. Appl. Stat. 1 229-248. · Zbl 1129.62098
[7] Benson, K. and Hartz, A. (2000). A comparison of observational studies and randomized controlled trials. New England Journal of Medicine 342 1878-1886.
[8] Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A., Mosteller, F. and Colditz, G. A. (1998). Meta-analysis of multiple outcomes by regression with random effects. Stat. Med. 17 2537-2550.
[9] Brookmeyer, R. and Gail, M. H. (1988). A method for obtaining short-term projections and lower bounds on the size of the AIDS epidemic. J. Amer. Statist. Assoc. 83 301-308. · Zbl 0644.62108
[10] Brown, T., Grassly, N. C., Garnett, G. and Stanecki, K. (2006). Improving projections at the country level: The UNAIDS estimation and projection package 2005. Sexually Transmitted Infections 82 iii34-iii40.
[11] Burzykowski, T., Molenberghs, G. and Buyse, M. (2004). The validation of surrogate end points by using data from randomized clinical trials: A case-study in advanced colorectal cancer. J. Roy. Statist. Soc. Ser. A 167 103-124.
[12] Caldwell, D. M., Ades, A. E. and Higgins, J. P. T. (2005). Simultaneous comparison of multiple treatments: Combining direct and indirect evidence. British Medical Journal 331 897-900.
[13] Claxton, K. P., Sculpher, M. J. and Drummond, M. (2002). A rational framework for decision making by the national institute for clinical excellence (NICE). The Lancet 360 711-715.
[14] De Angelis, D., Sweeting, M., Ades, A. E., Hickman, M., Hope, V. and Ramsay, M. (2009). An evidence synthesis approach to estimating hepatitis C prevalence in England and Wales. Stat. Methods Med. Res. 18 361-379.
[15] Dominici, F., Parmigiani, G., Wolpert, R. L. and Hasselblad, V. (1999). Meta-analysis of migraine headache treatments: Combining information from heterogeneous designs. J. Amer. Statist. Assoc. 94 16-28.
[16] Drioycour, F., Silberman, G. and Chelimsky, E. (1993). Cross-design synthesis: A new form of meta-analysis for combining the results from randomised clinical trials and medical-practice databases. International Journal of Technology Assessment in Health Care 9 440-449.
[17] Eddy, D. M. and Hasselblad, V. (1992). Meta-analysis by the Confidence Profile Method . Academic Press, Boston, MA.
[18] Fuentes, M. and Raftery, A. E. (2005). Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 61 36-45. · Zbl 1077.62124
[19] Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Analytical Methods for Social Research . Cambridge Univ. Press, Cambridge.
[20] Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statist. Sci. 7 457-472. · Zbl 1386.65060
[21] Ghys, P. D., Brown, T., Grassly, N. C., Garnett, G., Stanecki, K. A., Stover, J. and Walker, N. (2004). The UNAIDS Estimation and Projection Package: A Software Package to Estimate and Project National HIV Epidemics. British Medical Journal 80 i5-i9.
[22] Giesecke, J., Johnson, A., Hawkins, A., Noone, A. and Nicoll, A. (1994). An estimate of the prevalence of human immunodeficiency virus infection in England and Wales by using a direct method. J. Roy. Statist. Soc. Ser. A 157 89-103.
[23] Goubar, A., Ades, A. E., De Angelis, D., McGarrigle, C. A., Mercer, C. H., Tookey, P. A., Fenton, K. and Gill, O. N. (2008). Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multi-parameter synthesis of surveillance data. J. Roy. Statist. Soc. Ser. A 171 541-580.
[24] HIV & STI Department (2005). Mapping the issues. HIV and other sexually transmitted infections in the United Kingdom 2005. Technical report, Health Protection Agency.
[25] HIV & STI Department (2006). A complex picture. HIV and other sexually transmitted infections in the United Kingdom 2006. Technical report, Health Protection Agency.
[26] HIV & STI Department (2007). Testing times. HIV and other sexually transmitted infections in the United Kingdom 2007. Technical report, Health Protection Agency.
[27] HIV & STI Department (2008). HIV in the United Kingdom: 2008 report. Technical report, Health Protection Agency.
[28] HIV & STI Department (2009). HIV in the United Kingdom: 2009 report. Technical report, Health Protection Agency.
[29] Houweling, H., Heisterkamp, S. H., Wiessing, L. G., Coutinho, R. A., van Wijngaarden, J. K. and Jager, H. J. C. (1998). Methods for estimating HIV prevalence: A comparison of extrapolation from surveys on infection rate and risk behaviour with back-calculation for the Netherlands. European Journal of Epidemiology 14 645-652.
[30] Karon, J. M., Khare, M. and Rosenberg, P. S. (1998). The current status of methods for estimating the prevalence of human immunodeficiency virus in the United States of America. Stat. Med. 17 127-142.
[31] Lu, G. and Ades, A. E. (2004). Combination of direct and indirect evidence in mixed treatment comparisons. Stat. Med. 23 3105-3124.
[32] Lunn, D. J., Thomas, A., Best, N. and Spiegelhalter, D. (2000). WinBUGS-A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 10 325-337.
[33] Lyerla, R., Gouws, E., Garcia-Calleja, J. M. and Zaniewski, E. (2006). The 2005 workbook: An improved tool for estimating HIV prevalence in countries with low level and concentrated epidemics. Sexually Transmitted Infections 82 iii41-iii44.
[34] McGarrigle, C. A., Cliffe, S., Copas, A. J., Mercer, C. H., De Angelis, D., Fenton, K. A., Evans, B. G., Johnson, A. M. and Gill, O. N. (2006). Estimating adult HIV prevalence in the UK in 2003: The direct method of estimation. British Medical Journal 82 78-86.
[35] Nam, I. S., Mengersen, K. and Garthwaite, P. (2003). Multivariate meta-analysis. Stat. Med. 22 2309-2333.
[36] Parmigiani, G. and Inoue, L. (2009). Decision Theory : Principles and Approaches . Wiley, Chichester. · Zbl 1178.62004
[37] Petruckevitch, A., Nicoll, A., Johnson, A. and Bennett, D. (1997). Direct estimates of prevalent HIV infection in adults in England and Wales for 1991 and 1993: An improved method. Genitourinary Medicine 73 348-354.
[38] Poole, D. and Raftery, A. E. (2000). Inference for deterministic simulation models: The Bayesian melding approach. J. Amer. Statist. Assoc. 95 1244-1255. · Zbl 1072.62544
[39] Presanis, A. M., De Angelis, D., Spiegelhalter, D. J., Seaman, S., Goubar, A. and Ades, A. E. (2008). Conflicting evidence in a Bayesian synthesis of surveillance data to estimate HIV prevalence. J. Roy. Statist. Soc. Ser. A 171 915-937.
[40] Presanis, A. M., De Angelis, D., Goubar, A., Gill, O. N. and Ades, A. E. (2011). Bayesian evidence synthesis for a transmission dynamic model for HIV among men who have sex with men. Biostatistics 0 1-16. · Zbl 1314.62249
[41] Raftery, A. E. and Bao, L. (2010). Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics . · Zbl 1233.62185
[42] Ramón, J. S., Alvarenga, M., Walker, N., Garcia-Calleja, J. M. and Zacarias, F. (2002). Estimating HIV/AIDS prevalence in countries with low-level and concentrated epidemics: The example of Honduras. AIDS 16 S18-S22.
[43] Robert, C. P. (2007). The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation , 2nd ed. Springer, New York. · Zbl 1129.62003
[44] Seaman, S., De Angelis, D. and Presanis, A. M. (2011). Using posterior mean deviance to assess Bayesian model fit. Personal communication.
[45] Song, F., Altman, D. G., Glenny, A. M. and Deeks, J. J. (2003). Validity of indirect comparison for estimating efficacy of competing interventions: Empirical evidence from published meta-analyses. British Medical Journal 326 472-476.
[46] Spiegelhalter, D. J. and Best, N. G. (2003). Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling. Stat. Med. 22 3687-3709.
[47] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 583-639. · Zbl 1067.62010
[48] Stover, J. (2004). Projecting the demographic consequences of adult HIV prevalence trends: The spectrum projection package. Sexually Transmitted Infections 80 i14-i18.
[49] Sutton, A. J., Abrams, K. R., Jones, D. R., Sheldon, T. A. and Song, F. (2000). Methods for Meta-Analysis in Medical Research . Wiley, Chichester.
[50] Sweeting, M. J., De Angelis, D., Hickman, M. and Ades, A. E. (2008). Estimating hepatitis C prevalence in england and Wales by synthesizing evidence from multiple data sources. Assessing data conflict and model fit. Biostatistics 9 715-734.
[51] Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S. and Thompson, S. G. (2009). Bias modelling in evidence synthesis. J. Roy. Statist. Soc. Ser. A 172 21-47.
[52] Van der Bij, A. K., Dukers, N. H. T. M., Coutinho, R. A. and Fennema, H. S. A. (2008). Low HIV-testing rates and awareness of HIV infection among high-risk heterosexual STI clinic attendees in The Netherlands. The European Journal of Public Health 18 376-379.
[53] van Veen, M. G. (2009). Interim meeting. Personal communication.
[54] van Veen, M. G., Wagemans, M. A. J., Op de Coul, E. L. M., Fennema, J. S. A., van der Helm, T. C. M., Walter, J., Prins, M. and van der Laar, M. J. W. (2005). HIV-surveys among high risk populations in Amsterdam 2003-2004. Technical report, National Institute for Public Health and the Environment, Bilthoven, Netherlands. (In Dutch.)
[55] van Veen, M. G., Presanis, A. M., Conti, S., Xiridou, M., Rinder Stengaard, A., Donoghoe, M. C., van Sighem, A., van der Sande, M. and De Angelis, D. (2011). National estimate of HIV prevalence in The Netherlands: Comparison and applicability of different estimation tools. AIDS 25 229-237. · Zbl 1234.62140
[56] Walker, N., Stover, J., Stanecki, K., Zaniewski, A. E., Grassly, N. C., Garcia-Calleja, J. M. and Ghys, P. D. (2004). The workbook approach to making estimates and projecting future scenarios of HIV/AIDS in countries with low level and concentrated epidemics. Sexually Transmitted Infections 80 i10-i13.
[57] Welton, N. J. and Ades, A. E. (2005). A model of toxoplasmosis incidence in the UK: Evidence synthesis and consistency of evidence. J. Roy. Statist. Soc. Ser. C 54 385-404. · Zbl 05188692
[58] Whitehead, A. (2002). Meta-Analysis of Controlled Clinical Trials . Wiley, Chichester. · Zbl 1014.62123
[59] Wolpert, R. L. and Mengersen, K. L. (2004). Adjusted likelihoods for synthesizing empirical evidence from studies that differ in quality and design: Effects of environmental tobacco smoke. Statist. Sci. 19 450-471. · Zbl 1100.62621
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.