Panaretos, Victor M.; Konis, Kjell Sparse approximations of protein structure from noisy random projections. (English) Zbl 1234.62147 Ann. Appl. Stat. 5, No. 4, 2572-2602 (2011). Summary: Single-particle electron microscopy is a modern technique that biophysicists employ to learn the structure of proteins. It yields data that consist of noisy random projections of the protein structure in random directions, with the added complication that the projection angles cannot be observed. In order to reconstruct a three-dimensional model, the projection directions need to be estimated by use of an ad-hoc starting estimate of the unknown particle. We propose a methodology that does not rely on knowledge of the projection angles, to construct an objective data-dependent low-resolution approximation of the unknown structure that can serve as such a starting estimate. The approach assumes that the protein admits a suitable sparse representation, and employs discrete \(L^{1}\)-regularization (LASSO) as well as notions from shape theory to tackle the peculiar challenges involved in the associated inverse problem. We illustrate the approach by application to the reconstruction of an E. coli protein component called the Klenow fragment. Cited in 1 ReviewCited in 3 Documents MSC: 62P10 Applications of statistics to biology and medical sciences; meta analysis 92C55 Biomedical imaging and signal processing 62H35 Image analysis in multivariate analysis 92C40 Biochemistry, molecular biology Keywords:statistical tomography; electron microscopy; single particles; nearly black object; LASSO; deconvolution; Roman surface Software:ElemStatLearn; R; lars × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Apery, F. (1987). Models of the Real Projective Plane : Computer Graphics of Steiner and Boy Surfaces . Vieweg, Braunschweig. · Zbl 0623.57001 [2] Bern, M., Chen, J. and Wong, H. (2005). Avoiding local optima in single particle reconstruction. In Research in Computational Molecular Biology (S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P. Pevzner and M. Waterman, eds.). Lecture Notes in Computer Science 3500 118-132. Springer, Berlin. · Zbl 1119.92345 · doi:10.1007/b135594 [3] Chiu, W. (1993). What does electron cryomicroscopy provide that X-ray crystallography and NMR spectroscopy cannot? Annu. Rev. Bioph. Biom. 22 233-255. [4] Deans, S. R. (1993). The Radon Transform and Some of Its Applications . Krieger, Malabar, FL. · Zbl 0868.44001 [5] Donoho, D. L., Johnstone, I. M., Hoch, J. C. and Stern, A. S. (1992). Maximum entropy and the nearly black object. J. Roy. Statist. Soc. Ser. B 54 41-81. · Zbl 0788.62103 [6] Drenth, J. (1999). Principles of Protein X-Ray Crystallography . Springer, New York. [7] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression. Ann. Statist. 32 407-451. · Zbl 1091.62054 · doi:10.1214/009053604000000067 [8] Frank, J. (1999). Three-Dimensional Electron Microscopy of Macromolecular Assemblies . Academic Press, San Diego. [9] Glaeser, R. M. (1999). Review: Electron crystallography: Present excitement, a nod to the past, anticipating the future. J. Struct. Biol. 128 3-14. [10] Glaeser, R. M., Chiu, W., Frank, J., DeRosier, D., Baumeister, W. and Downing, K. (2007). Electron Crystallography of Biological Macromolecules . Oxford Univ. Press, Oxford. [11] Green, P. J. (1990). Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE T. Med. Imaging 9 84-93. [12] Grenander, U. and Szegö, G. (1958). Toeplitz Forms and Their Applications . Univ. California Press, Berkeley. · Zbl 0080.09501 [13] Hastie, T. and Efron, B. (2011). lars: Least angle regression, Lasso and forward stagewise. R package version 0.9-8. [14] Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning : Data Mining, Inference, and Prediction . Springer, New York. · Zbl 0973.62007 [15] Henderson, R. (2004). Realizing the potential of electron cryo-microscopy. Q. Rev. Biophys. 37 3-13. [16] Johnstone, I. M. and Silverman, B. W. (1990). Speed of estimation in positron emission tomography and related inverse problems. Ann. Statist. 18 251-280. · Zbl 0699.62043 · doi:10.1214/aos/1176347500 [17] Jones, M. C. and Silverman, B. W. (1989). An orthogonal series density estimation approach to reconstructing positron emission tomography images. J. Appl. Stat. 16 177-191. [18] Kendall, W. S. and Le, H. (2009). Statistical shape theory. In New Perspectives in Stochastic Geometry (W. S. Kendall and I. S. Molchanov, eds.). Oxford Univ. Press, Oxford. · Zbl 1192.62166 [19] Kendall, D. G., Barden, D., Carne, T. K. and Le, H. (1999). Shape and Shape Theory . Wiley, Chichester. · Zbl 0940.60006 [20] Klenow, H. and Henningsen, I. (1970). Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from escherichia coli B by limited proteolysis. Proc. Natl. Acad. Sci. USA 65 168-175. [21] Le, H. and Barden, D. (2010). On the induced distribution of the shape of the projection of a randomly rotated configuration. Adv. in Appl. Probab. 42 331-346. · Zbl 1202.60023 · doi:10.1239/aap/1275055231 [22] Leschziner, A. E. and Nogales, E. (2006). The orthogonal tilt reconstruction method: An approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J. Struct. Biol. 153 284-299. [23] Natterer, F. (2001). The Mathematics of Computerized Tomography. Classics in Applied Mathematics 32 . SIAM, Philadelphia, PA. · Zbl 0973.92020 · doi:10.1137/1.9780898719284 [24] O’Sullivan, F. (1995). A study of least squares and maximum likelihood for image reconstruction in positron emission tomography. Ann. Statist. 23 1267-1300. · Zbl 0839.62035 · doi:10.1214/aos/1176324709 [25] Panaretos, V. M. (2006). The diffusion of radon shape. Adv. in Appl. Probab. 38 320-335. · Zbl 1125.60005 · doi:10.1239/aap/1151337074 [26] Panaretos, V. M. (2008). Representation of radon shape diffusions via hyperspherical Brownian motion. Math. Proc. Cambridge Philos. Soc. 145 457-470. · Zbl 1180.60066 · doi:10.1017/S0305004108001370 [27] Panaretos, V. M. (2009). On random tomography with unobservable projection angles. Ann. Statist. 37 3272-3306. · Zbl 1193.60017 · doi:10.1214/08-AOS673 [28] Penczek, P., Grassucci, R. A. and Frank, J. (1994). The ribosome at improved resolution: New techniques for merging and orientation refinement in 3D cryoelectron microscopy of biological particles. Ultramicroscopy 40 33-53. [29] Pisarenko, V. F. (1973). The retrieval of harmonics from a covariance function. Geophys. J. R. Astr. S. 33 347-366. · Zbl 0287.62048 [30] R Development Core Team (2011). R : A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna, Austria. [31] Rademacher, M. (1994). Three dimensional reconstruction from random projections: orientational alignment via Radon transforms. Ultramicroscopy 17 117-126. [32] Sigworth, F. J. (1998). A maximum-likelihood approach to single-particle image refinement. J. Struct. Biol. 122 328-339. [33] Silverman, B. W., Jones, M. C., Wilson, J. D. and Nychka, D. W. (1990). A smoothed EM approach to indirect estimation problems with particular reference to stereology and emission tomography. J. Roy. Statist. Soc. Ser. B 52 271-324. · Zbl 0703.62105 [34] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. · Zbl 0850.62538 [35] Vardi, Y., Shepp, L. A. and Kaufman, L. (1985). A statistical model for positron emission tomography (with discussion). J. Amer. Statist. Assoc. 80 8-37. · Zbl 0561.62094 · doi:10.2307/2288030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.