×

On the minimal length uncertainty relation and the foundations of string theory. (English) Zbl 1234.81093

Summary: We review our work on the minimal length uncertainty relation as suggested by perturbative string theory. We discuss simple phenomenological implications of the minimal length uncertainty relation and then argue that the combination of the principles of quantum theory and general relativity allow for a dynamical energy-momentum space. We discuss the implication of this for the problem of vacuum energy and the foundations of nonperturbative string theory.

MSC:

81R60 Noncommutative geometry in quantum theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, vol. I,II, Cambridge University Press, New York, NY, USA, 1988.
[2] J. Polchinski, String Theory, vol. I,II, Cambridge University Press, New York, NY, USA, 1998. · Zbl 1006.81521
[3] K. Becker, M. Becker, and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction, Cambridge University Press, New York, NY, USA, 2007. · Zbl 1123.81001
[4] J. A. Wheeler, “On the nature of quantum geometrodynamics,” Annals of Physics, vol. 2, no. 6, pp. 604-614, 1957. · Zbl 0078.19201
[5] C. A. Mead, “Possible connection between gravitation and fundamental length,” Physical Review, vol. 135, no. 3B, pp. B849-B862, 1964. · Zbl 0126.24201
[6] M. Maggiore, “A generalized uncertainty principle in quantum gravity,” Physics Letters Section B, vol. 304, no. 1-2, pp. 65-69, 1993.
[7] L. J. Garay, “Quantum gravity and minimum length,” International Journal of Modern Physics A, vol. 10, no. 2, pp. 145-165, 1995.
[8] S. Weinberger, “The cosmological constant problem,” Reviews of Modern Physics, vol. 61, no. 1, pp. 1-23, 1989. · Zbl 1129.83361
[9] S. M. Carroll, “The cosmological constant,” Living Reviews in Relativity, vol. 4, article 1, 2001. · Zbl 1023.83022
[10] E. Witten, “The cosmological constant from the viewpoint of string theory,” . In press, http://arxiv.org/abs/hep-ph/0002297.
[11] N. Straumann, “The history of the cosmological constant problem,” . In press, http://arxiv.org/abs/gr-qc/0208027. · Zbl 1054.83044
[12] S. Nobbenhuis, “Categorizing different approaches to the cosmological constant problem,” Foundations of Physics, vol. 36, no. 5, pp. 613-680, 2006. · Zbl 1100.85517
[13] J. Polchinski, “What is string theory?” . In press, http://arxiv.org/abs/hep-th/9411028.
[14] L. N. Chang, Z. Lewis, D. Minic, T. Takeuchi, and C. H. Tze, “Bell’s inequalities, superquantum correlations, and string theory,” . In press, http://arxiv.org/abs/1104.3359. · Zbl 1234.81031
[15] H. Kragh, “Arthur March, Werner Heisenberg, and the search for a smallest length,” Revue d’Histoire des Sciences, vol. 8, no. 4, pp. 401-434, 1995. · Zbl 0863.01009
[16] H. Kragh, “Heisenberg’s lattice world: the 1930 theory sketch,” American Journal of Physics, vol. 63, pp. 595-605, 1995.
[17] W. Heisenberg and W. Pauli, “Zur Quantendynamik der Wellenfelder,” Zeitschrift für Physik, vol. 56, no. 1-2, pp. 1-61, 1929. · JFM 55.0519.07
[18] M. Born, “Modified field equations with a finite radius of the electron,” Nature, vol. 132, no. 3329, p. 282, 1933. · Zbl 0007.23402
[19] H. S. Snyder, “Quantized space-time,” Physical Review, vol. 71, no. 1, pp. 38-41, 1947. · Zbl 0035.13101
[20] H. S. Snyder, “The electromagnetic field in quantized space-time,” Physical Review, vol. 72, no. 9, pp. 68-71, 1947. · Zbl 0041.33118
[21] C. N. Yang, “On quantized space-time,” Physical Review, vol. 72, no. 1, p. 874, 1947. · Zbl 0029.18407
[22] C. A. Mead, “Observable consequences of fundamental-length hypotheses,” Physical Review, vol. 143, no. 4, pp. 990-1005, 1966.
[23] T. G. Pavlopoulos, “Breakdown of Lorentz invariance,” Physical Review, vol. 159, no. 5, pp. 1106-1110, 1967. · Zbl 0173.30504
[24] T. Padmanabhan, “Physical significance of planck length,” Annals of Physics, vol. 165, no. 1, pp. 38-58, 1985.
[25] T. Padmanabhan, “Limitations on the operational definition of spacetime events and quantum gravity,” Classical and Quantum Gravity, vol. 4, article L107, 1987.
[26] T. Padmanabhan, “Duality and zero-point length of spacetime,” Physical Review Letters, vol. 78, no. 10, pp. 1854-1857, 1997. · Zbl 0879.94008
[27] S. Hossenfelder, M. Bleicher, S. Hofmann, J. Ruppert, S. Scherer, and H. Stöcker, “Signatures in the Planck regime,” Physics Letters Section B, vol. 575, no. 1-2, pp. 85-99, 2003. · Zbl 1029.83501
[28] U. Harbach, S. Hossenfelder, M. Bleicher, and H. Stöcker, “Probing the minimal length scale by precision tests of the muon g - 2,” Physics Letters Section B, vol. 584, no. 1-2, pp. 109-113, 2004.
[29] U. Harbach and S. Hossenfelder, “The Casimir effect in the presence of a minimal length,” Physics Letters Section B, vol. 632, no. 2-3, pp. 379-383, 2006.
[30] S. Hossenfelder, “Running coupling with minimal length,” Physical Review D, vol. 70, no. 10, Article ID 105003, 2004. · Zbl 1065.81608
[31] S. Hossenfelder, “A note on theories with a minimal length,” Classical and Quantum Gravity, vol. 23, no. 5, pp. 1815-1821, 2006. · Zbl 1089.83004
[32] S. Hossenfelder, “Interpretation of quantum field theories with a minimal length scale,” Physical Review D, vol. 73, no. 10, Article ID 105013, 2006. · Zbl 1089.83004
[33] S. Das and E. C. Vagenas, “Universality of quantum gravity corrections,” Physical Review Letters, vol. 101, no. 22, Article ID 221301, 2008.
[34] S. Das and E. C. Vagenas, “Phenomenological implications of the generalized uncertainty principle,” Canadian Journal of Physics, vol. 87, no. 3, pp. 233-240, 2009.
[35] S. Das and E. C. Vagenas, “Das and Vagenas reply:,” Physical Review Letters, vol. 104, no. 11, Article ID 119002, 2010.
[36] A. F. Ali, S. Das, and E. C. Vagenas, “Discreteness of space from the generalized uncertainty principle,” Physics Letters Section B, vol. 678, no. 5, pp. 497-499, 2009.
[37] S. Basilakos, S. Das, and E. C. Vagenas, “Quantum gravity corrections and entropy at the planck time,” Journal of Cosmology and Astroparticle Physics, vol. 2010, no. 9, article 027, 2010.
[38] S. Das, E. C. Vagenas, and A. F. Ali, “Discreteness of space from GUP II: relativistic wave equations,” Physics Letters Section B, vol. 690, no. 4, pp. 407-412, 2010.
[39] S. Das, E. C. Vagenas, and A. Farag Ali, “Erratum to Discreteness of space from GUP II: relativistic wave equations,” Physics Letters Section B, vol. 692, no. 5, p. 342, 2010.
[40] B. Bagchi and A. Fring, “Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems,” Physics Letters Section A, vol. 373, no. 47, pp. 4307-4310, 2009. · Zbl 1234.81069
[41] A. Fring, L. Gouba, and F. G. Scholtz, “Strings from position-dependent noncommutativity,” Journal of Physics A, vol. 43, no. 34, Article ID 345401, 2010. · Zbl 1195.81102
[42] A. Fring, L. Gouba, and B. Bagchi, “Minimal areas from q-deformed oscillator algebras,” Journal of Physics A, vol. 43, no. 42, Article ID 425202, 2010. · Zbl 1200.81086
[43] S. Weinberg, “Precision tests of quantum mechanics,” Physical Review Letters, vol. 62, no. 5, pp. 485-488, 1989.
[44] S. Weinberg, “Testing quantum mechanics,” Annals of Physics, vol. 194, no. 2, pp. 336-386, 1989.
[45] C. M. Bender, D. C. Brody, and H. F. Jones, “Complex extension of quantum mechanics,” eConf, vol. 617, Article ID C0306234, 2003. · Zbl 1267.81234
[46] C. M. Bender, D. C. Brody, and H. F. Jones, “Complex extension of quantum mechanics,” Physical Review Letters, vol. 89, Article ID 270401, 2002. · Zbl 1267.81234
[47] C. M. Bender, D. C. Brody, and H. F. Jones, “Erratum: complex extension of quantum mechanics,” Physical Review Letters, vol. 92, no. 11, Article ID 119902, 2004. · Zbl 1267.81234
[48] M. Maggiore, “Quantum groups, gravity, and the generalized uncertainty principle,” Physical Review D, vol. 49, no. 10, pp. 5182-5187, 1994.
[49] M. Maggiore, “The algebraic structure of the generalized uncertainty principle,” Physics Letters Section B, vol. 319, no. 1-3, pp. 83-86, 1993.
[50] A. Kempf, G. Mangano, and R. B. Mann, “Hilbert space representation of the minimal length uncertainty relation,” Physical Review D, vol. 52, no. 2, pp. 1108-1118, 1995.
[51] D. Amati, M. Ciafaloni, and G. Veneziano, “Can spacetime be probed below the string size?” Physics Letters B, vol. 216, no. 1-2, pp. 41-47, 1989.
[52] E. Witten, “Reflections on the fate of spacetime,” Physics Today, vol. 49, no. 4, pp. 24-30, 1996.
[53] D. J. Gross and P. F. Mende, “The high-energy behavior of string scattering amplitudes,” Physics Letters B, vol. 197, no. 1-2, pp. 129-134, 1987.
[54] D. J. Gross and P. F. Mende, “String theory beyond the Planck scale,” Nuclear Physics Section B, vol. 303, no. 3, pp. 407-454, 1988.
[55] D. Amati, M. Ciafaloni, and G. Veneziano, “Superstring collisions at planckian energies,” Physics Letters B, vol. 197, no. 1-2, pp. 81-88, 1987.
[56] D. Amati, M. Ciafaloni, and G. Veneziano, “Classical and quantum gravity effects from Planckian energy superstring collisions,” International Journal of Modern Physics A, vol. 3, no. 7, pp. 1615-1661, 1988.
[57] W. Heisenberg, The Physical Principles of the Quantum Theory, University of Chicago Press, Dover Publications, 1930. · JFM 56.0745.04
[58] J. A. Wheeler, “On the mathematical description of light nuclei by the method of resonating group structure,” Physical Review, vol. 52, no. 11, pp. 1107-1122, 1937. · JFM 63.1405.01
[59] W. Heisenberg, “Die beobachtbaren Größen in der theorie der elementarteilchen,” Zeitschrift für Physik, vol. 120, no. 7-10, pp. 513-538, 1943. · Zbl 0028.27902
[60] W. Heisenberg, “Die beobachtbaren Größen in der theorie der elementarteilchen. II,” Zeitschrift für Physik, vol. 120, no. 11-12, pp. 673-702, 1943. · Zbl 0028.27902
[61] W. Heisenberg, “Die beobachtbaren Größen in der theorie der elementarteilchen. III,” Zeitschrift für Physik, vol. 123, no. 1-2, pp. 93-112, 1944. · Zbl 0063.01986
[62] L. Susskind and E. Witten, “The holographic bound in anti-de sitter space,” . In press, http://arxiv.org/abs/hep-th/9805114.
[63] A. W. Peet and J. Polchinski, “UV-IR relations in AdS dynamics,” Physical Review D, vol. 59, no. 6, pp. 1-5, 1999.
[64] L. I. Mandelshtam and I. E. Tamm, “The uncertainty relation between energy and time in nonrelativistic quantum mechanics,” Journal of Physics-USSR, vol. 9, pp. 249-254, 1945.
[65] E. P. Wigner, “On the time-energy uncertainty relation,” in Aspects of Quantum Theory, A. Salam and E. P. Wigner, Eds., pp. 237-247, Cambridge University Press, New York, NY, USA, 1972.
[66] M. Bauer and P. A. Mello, “The time-energy uncertainty relation,” Annals of Physics, vol. 111, no. 1, pp. 38-60, 1978.
[67] T. Yoneya, “On the interpretation of minimal length in string theories,” Modern Physics Letters A, vol. 4, no. 16, pp. 1587-1595, 1989.
[68] T. Yoneya, “Schild action and space-time uncertainty principle in string theory,” Progress of Theoretical Physics, vol. 97, no. 6, pp. 949-961, 1997.
[69] T. Yoneya, “String theory and the space-time uncertainty principle,” Progress of Theoretical Physics, vol. 103, no. 6, pp. 1081-1125, 2000.
[70] M. Li and T. Yoneya, “Short-distance space-time structure and black holes in string theory: a short review of the present status,” Chaos, Solitons and Fractals, vol. 10, no. 2, pp. 423-443, 1999. · Zbl 1006.83053
[71] A. Jevicki and T. Yoneya, “Space-time uncertainty principle and conformal symmetry in D-particle dynamics,” Nuclear Physics B, vol. 535, no. 1-2, pp. 335-348, 1998. · Zbl 1080.81602
[72] H. Awata, M. Li, D. Minic, and T. Yoneya, “On the quantization of Nambu brackets,” Journal of High Energy Physics, vol. 5, no. 2, article 013, 2001.
[73] D. Minic, “On the space-time uncertainty principle and holography,” Physics Letters Section B, vol. 442, no. 1-4, pp. 102-108, 1998. · Zbl 1002.83518
[74] F. Brau, “Minimal length uncertainty relation and the hydrogen atom,” Journal of Physics A, vol. 32, no. 44, pp. 7691-7696, 1999. · Zbl 0991.81047
[75] F. Brau and F. Buisseret, “Minimal length uncertainty relation and gravitational quantum well,” Physical Review D, vol. 74, no. 3, Article ID 036002, 2006.
[76] S. Z. Benczik, , Ph.D. thesis, Virginia Tech, 2007.
[77] A. Kempf, “Non-pointlike particles in harmonic oscillators,” Journal of Physics A, vol. 30, no. 6, pp. 2093-2101, 1997. · Zbl 0930.58026
[78] L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, “Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations,” Physical Review D, vol. 65, no. 12, Article ID 125027, 2002.
[79] S. Benczik, L. N. Chang, D. Minic, and T. Takeuchi, “Hydrogen-atom spectrum under a minimal-length hypothesis,” Physical Review A, vol. 72, no. 1, Article ID 012104, p. 4, 2005.
[80] A. Chodos and E. Myers, “Gravitational contribution to the Casimir energy in Kaluza-Klein theories,” Annals of Physics, vol. 156, no. 2, pp. 412-441, 1984.
[81] A. Higuchi, “Symmetric tensor spherical harmonics on the N-sphere and their application to the de Sitter group SO(N,1),” Journal of Mathematical Physics, vol. 28, no. 7, pp. 1553-1566, 1987. · Zbl 0656.58046
[82] N. A. Vilenkin, Special Functions and the Theory of Group Representations, American Mathematical Society, 1968. · Zbl 0172.18404
[83] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Acedemic Press, 2000. · Zbl 0981.65001
[84] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Table, Dover Publications, 1965. · Zbl 0171.38503
[85] E. W. Weisstein, “Confluent Hypergeometric Function of the Second Kind,” http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheSecondKind.html.
[86] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “The hierarchy problem and new dimensions at a millimeter,” Physics Letters Section B, vol. 429, no. 3-4, pp. 263-272, 1998. · Zbl 1355.81103
[87] K. R. Dienes, E. Dudas, and T. Gherghetta, “Extra spacetime dimensions and unification,” Physics Letters Section B, vol. 436, no. 1-2, pp. 55-65, 1998.
[88] T. Han, J. D. Lykken, and R. J. Zhang, “Kaluza-Klein states from large extra dimensions,” Physical Review D, vol. 59, no. 10, pp. 1-14, 1999.
[89] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, “Bounds on universal extra dimensions,” Physical Review D, vol. 64, no. 3, Article ID 035002, 2001. · Zbl 1056.83514
[90] C. Schwob, L. Jozefowski, B. De Beauvoir et al., “Optical frequency measurement of the 2S-12D transitions in hydrogen and deuterium: Rydberg constant and lamb shift determinations,” Physical Review Letters, vol. 82, no. 25, pp. 4960-4963, 1999.
[91] S. Mallampalli and J. Sapirstein, “Perturbed orbital contribution to the two-loop lamb shift in hydrogen,” Physical Review Letters, vol. 80, no. 24, pp. 5297-5300, 1998.
[92] M. I. Eides, H. Grotch, and V. A. Shelyuto, “Theory of light hydrogenlike atoms,” Physics Report, vol. 342, no. 2-3, pp. 63-261, 2001. · Zbl 0972.81688
[93] G. G. Simon, C. Schmitt, F. Borkowski, and V. H. Walther, “Absolute electron-proton cross sections at low momentum transfer measured with a high pressure gas target system,” Nuclear Physics Section A, vol. 333, no. 3, pp. 381-391, 1980.
[94] V. V. Nesvizhevsky, H. G. Börner, A. K. Petukhov et al., “Quantum states of neutrons in the Earth’s gravitational field,” Nature, vol. 415, no. 6869, pp. 297-299, 2002.
[95] V. V. Nesvizhevsky, et al., “Measurement of quantum states of neutrons in the Earth’s gravitational field,” Physical Review D, vol. 67, no. 10, Article ID 102002, 2003. · Zbl 1079.83505
[96] V. V. Nesvizhevsky, A. K. Petukhov, H. G. Börner et al., “Study of the neutron quantum states in the gravity field,” European Physical Journal C, vol. 40, no. 4, pp. 479-491, 2005.
[97] L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, “Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem,” Physical Review D, vol. 65, no. 12, Article ID 125028, 2002.
[98] S. Benczik, L. N. Chang, D. Minic, N. Okamura, S. Rayyan, and T. Takeuchi, “Short distance versus long distance physics: the classical limit of the minimal length uncertainty relation,” Physical Review D, vol. 66, no. 2, Article ID 026003, 2002.
[99] T. Banks, “The Cosmological Constant Problem,” Physics Today, vol. 57, no. 3, pp. 46-51, 2004.
[100] J. Polchinski, “The cosmological constant and the string landscape,” . In press, http://arxiv.org/abs/hep-th/0603249. · Zbl 1163.83001
[101] E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” International Journal of Modern Physics D, vol. 15, no. 11, pp. 1753-1935, 2006. · Zbl 1203.83061
[102] E. Komatsu, et al., “Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation,” The Astrophysical Journal Supplement, vol. 192, no. 2, 2011.
[103] E. P. Wigner, “Relativistic invariance and quantum phenomena,” Reviews of Modern Physics, vol. 29, no. 3, pp. 255-268, 1957. · Zbl 0097.42702
[104] H. Salecker and E. P. Wigner, “Quantum limitations of the measurement of space-time distances,” Physical Review, vol. 109, no. 2, pp. 571-577, 1958. · Zbl 0078.43702
[105] F. Karolyhazy, “Gravitation and quantum mechanics of macroscopic objects,” Nuovo Cimento A, vol. 42, no. 2, pp. 390-402, 1966.
[106] Y. J. Ng and H. Van Dam, “Limit to space-time measurement,” Modern Physics Letters A, vol. 9, no. 4, pp. 335-340, 1994.
[107] Y. J. Ng and H. Van Dam, “Remarks on gravitational sources,” Modern Physics Letters A, vol. 10, no. 36, pp. 2801-2808, 1995.
[108] Y. J. Ng and H. Van Dam, “Measuring the foaminess of space-time with gravity-wave interferometers,” Foundations of Physics, vol. 30, no. 5, pp. 795-805, 2000.
[109] Y. J. Ng, “Spacetime foam: from entropy and holography to infinite statistics and nonlocality,” Entropy, vol. 10, no. 4, pp. 441-461, 2008.
[110] Non-relativistic space-time foam has more general “turbulent” scaling.
[111] G. Amelino-Camelia, “Limits on the measurability of space-time distances in (the semiclassical approximation of) quantum gravity,” Modern Physics Letters A, vol. 9, no. 37, pp. 3415-3422, 1994.
[112] L. Diósi and B. Lukács, “On the minimum uncertainty of space-time geodesics,” Physics Letters A, vol. 142, no. 6-7, pp. 331-334, 1989.
[113] L. Diósi and B. Lukács, “Critique of proposed limit to space-time measurement, based on Wigner’s clocks and mirrors,” Europhysics Letters, vol. 34, no. 7, pp. 479-481, 1996.
[114] V. Jejjala, D. Minic, Y. J. Ng, and C. H. Tze, “Turbulence and holography,” Classical and Quantum Gravity, vol. 25, no. 22, Article ID 225012, 2008. · Zbl 1152.83327
[115] T. Banks, “Cosmological breaking of supersymmetry?” International Journal of Modern Physics A, vol. 16, no. 5, pp. 910-921, 2001. · Zbl 0982.83040
[116] M. Gell-Mann, P. Ramond, and R. Slansky, “Complex spinors and unified theories,” in Supergravity, P. van Nieuwenhuizen and D. Z. Freedman, Eds., North Holland, 1979.
[117] T. Yanagida, “Horizontal symmetry and masses of neutrinos,” Progress of Theoretical Physics, vol. 64, no. 3, pp. 1103-1105, 1980.
[118] R. N. Mohapatra and G. Senjanović, “Neutrino mass and spontaneous parity nonconservation,” Physical Review Letters, vol. 44, no. 14, pp. 912-915, 1980.
[119] S. Weinberg, “Varieties of baryon and lepton nonconservation,” Physical Review D, vol. 22, no. 7, pp. 1694-1700, 1980.
[120] B. Schmittmann, K. Hwang, and R. K. P. Zia, “Onset of spatial structures in biased diffusion of two species,” Europhysics Letters, vol. 19, no. 1, article 19, 1992.
[121] D. Helbing, I. J. Farkas, and T. Vicsek, “Freezing by heating in a driven mesoscopic system,” Physical Review Letters, vol. 84, no. 6, pp. 1240-1243, 2000. · Zbl 0986.92006
[122] D. Helbing, “Traffic and related self-driven many-particle systems,” Reviews of Modern Physics, vol. 73, no. 4, pp. 1067-1141, 2001.
[123] R. K. P. Zia, E. L. Praestgaard, and O. G. Mouritsen, “Getting more from pushing less: negative specific heat and conductivity in nonequilibrium steady states,” American Journal of Physics, vol. 70, no. 4, pp. 384-392, 2002.
[124] D. Minic and C. H. Tze, “Background independent quantum mechanics and gravity,” Physical Review D, vol. 68, no. 6, Article ID 061501, 2003.
[125] D. Minic and C. H. Tze, “A general theory of quantum relativity,” Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, vol. 581, no. 1-2, pp. 111-118, 2004. · Zbl 1246.83079
[126] V. Jejjala and D. Mimic, “Why there is something so close to nothing: towards a fundamental theory of the cosmological constant,” International Journal of Modern Physics A, vol. 22, no. 10, pp. 1797-1818, 2007. · Zbl 1118.83367
[127] V. Jejjala, M. Kavic, D. Minic, and C. H. Tze, “On the origin of time and the universe,” International Journal of Modern Physics A, vol. 25, no. 12, pp. 2515-2523, 2010.
[128] V. Jejjala, M. Kavic, D. Minic, and C. -H. Tze, “The big bang as the ultimate traffic jam,” International Journal of Modern Physics D, vol. 18, no. 14, pp. 2257-2263, 2009. · Zbl 1183.83077
[129] Y. A. Gol’fand, Soviet Physics JETP, vol. 10, p. 842, 1960.
[130] Y. A. Gol’fand, “Quantum field theory in constant curvature p-space,” Soviet Physics JETP, vol. 16, p. 184, 1963. · Zbl 0129.42403
[131] Y. A. Gol’fand, Soviet Physics JETP, vol. 37, p. 365, 1966.
[132] L. Freidel and E. R. Livine, “3D quantum gravity and effective noncommutative quantum field theory,” Physical Review Letters, vol. 96, no. 22, Article ID 221301, p. 2947, 2006. · Zbl 1228.83047
[133] G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, “The principle of relative locality,” . In press, http://arxiv.org/abs/1101.0931. · Zbl 1263.83064
[134] L. N. Chang, D. Minic, and T. Takeuchi, “Quantum gravity, dynamical energymomentum space and vacuum energy,” Modern Physics Letters A, vol. 25, no. 35, pp. 2947-2954, 2010. · Zbl 1202.83041
[135] I. Bars, “Gauge symmetry in phase space consequences for physics and space-time,” International Journal of Modern Physics A, vol. 25, no. 9, pp. 5235-5252, 2010. · Zbl 1208.81141
[136] A. Einstein, “Investigations on the Theory of the Brownian Movement,” 2011, http://www.bnpublishing.net/.
[137] J. Magueijo and L. Smolin, “Lorentz invariance with an invariant energy scale,” Physical Review Letters, vol. 88, no. 19, Article ID 190403, 2002.
[138] J. Magueijo and L. Smolin, “Generalized Lorentz invariance with an invariant energy scale,” Physical Review D, vol. 67, no. 4, Article ID 044017, 2003.
[139] J. Kowalski-Glikman, “Introduction to doubly special relativity,” Lecture Notes in Physics, vol. 669, pp. 131-159, 2005.
[140] F. Girelli and E. R. Livine, “Special relativity as a noncommutative geometry: lessons for deformed special relativity,” Physical Review D, vol. 81, no. 8, Article ID 085041, 2010. · Zbl 1206.83074
[141] E. Witten, “Noncommutative geometry and string field theory,” Nuclear Physics B, vol. 268, p. 253, 1986.
[142] G. T. Horowitz, J. Lykken, R. Rohm, and A. Strominger, “Purely cubic action for string field theory,” Physical Review Letters, vol. 57, no. 3, pp. 283-286, 1986.
[143] A. Strominger, “Closed string field theory,” Nuclear Physics B, vol. 294, pp. 93-112, 1987.
[144] S. Okubo, Introduction to Octonion and Other Non-Associative Algebras in Physics, Cambridge University Press, New York, NY, USA, 1995. · Zbl 0841.17001
[145] H. Awata, M. Li, D. Minic, and T. Yoneya, “On the quantization of Nambu brackets,” Journal of High Energy Physics, vol. 5, no. 2, pp. 13-16, 2001.
[146] Y. Nambu, “Generalized hamiltonian dynamics,” Physical Review D, vol. 7, no. 8, pp. 2405-2412, 1973. · Zbl 1027.70503
[147] L. Takhtajan, “On foundation of the generalized Nambu mechanics,” Communications in Mathematical Physics, vol. 160, no. 2, pp. 295-315, 1994. · Zbl 0808.70015
[148] R. Chatterjee and L. Takhtajan, “Aspects of Classical and Quantum Nambu Mechanics,” Letters in Mathematical Physics, vol. 37, no. 4, pp. 475-482, 1996. · Zbl 0861.70018
[149] G. Dito, M. Flato, D. Sternheimer, and L. Takhtajan, “Deformation quantization and Nambu mechanics,” Communications in Mathematical Physics, vol. 183, no. 1, pp. 1-22, 1997. · Zbl 0877.70012
[150] R. G. Leigh, A. Mauri, D. Minic, and A. C. Petkou, “Gauge fields, membranes, and subdeterminant vector models,” Physical Review Letters, vol. 104, no. 22, Article ID 221801, 2010.
[151] R. Jackiw, “Topological investigations of quantized gauge theories,” in Current Algebra and Anomalies, S. Trieman, R. Jackiw, B. Zumino, and E. Witten, Eds., Princeton, 1985. · Zbl 0611.53076
[152] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Advances in Theoretical and Mathematical Physics, vol. 2, no. 2, pp. 231-252, 1998. · Zbl 0914.53047
[153] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” International Journal of Theoretical Physics, vol. 38, no. 4, pp. 1113-1133, 1999. · Zbl 0969.81047
[154] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Physics Letters Section B, vol. 428, no. 1-2, pp. 105-114, 1998. · Zbl 1355.81126
[155] E. Witten, “Anti-de Sitter space and holography,” Advances in Theoretical and Mathematical Physics, vol. 2, pp. 253-291, 1998. · Zbl 0914.53048
[156] R. Blumenhagen and E. Plauschinn, “Nonassociative gravity in string theory?” Journal of Physics A, vol. 44, no. 1, Article ID 015401, 2011. · Zbl 1208.83101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.