×

zbMATH — the first resource for mathematics

Braids inside the Birman-Wenzl-Murakami algebra. (English) Zbl 1235.20037
Summary: We determine the Zariski closure of the representations of the braid groups that factor through the Birman-Wenzl-Murakami algebra, for generic values of the parameters \(\alpha,s\). For \(\alpha,s\) of modulus 1 and close to 1, we prove that these representations are unitarizable, thus deducing the topological closure of the image when in addition \(\alpha,s\) are algebraically independent.

MSC:
20F36 Braid groups; Artin groups
20C08 Hecke algebras and their representations
20C15 Ordinary representations and characters
57M07 Topological methods in group theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M Artin, On the solutions of analytic equations, Invent. Math. 5 (1968) 277 · Zbl 0172.05301
[2] S J Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001) 471 · Zbl 0988.20021
[3] J S Birman, H Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989) 249 · Zbl 0684.57004
[4] V G Drinfel’d, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \(\mathrm{Gal}(\overline\mathbfQ/\mathbfQ)\), Algebra i Analiz 2 (1990) 149 · Zbl 0718.16034
[5] D Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer (1995) · Zbl 0819.13001
[6] M H Freedman, M J Larsen, Z Wang, The two-eigenvalue problem and density of Jones representation of braid groups, Comm. Math. Phys. 228 (2002) 177 · Zbl 1045.20027
[7] R Goodman, N R Wallach, Representations and invariants of the classical groups, Encycl. of Math. and its Appl. 68, Cambridge Univ. Press (1998) · Zbl 0901.22001
[8] D Krammer, The braid group \(B_4\) is linear, Invent. Math. 142 (2000) 451 · Zbl 0988.20023
[9] D Krammer, Braid groups are linear, Ann. of Math. \((2)\) 155 (2002) 131 · Zbl 1020.20025
[10] I Marin, Infinitesimal Hecke algebras, C. R. Math. Acad. Sci. Paris 337 (2003) 297 · Zbl 1056.20004
[11] I Marin, Quotients infinitésimaux du groupe de tresses, Ann. Inst. Fourier (Grenoble) 53 (2003) 1323 · Zbl 1063.20042
[12] I Marin, Caractères de rigidité du groupe de Grothendieck-Teichmüller, Compos. Math. 142 (2006) 657 · Zbl 1133.14027
[13] I Marin, L’algèbre de Lie des transpositions, J. Algebra 310 (2007) 742 · Zbl 1171.20010
[14] I Marin, Sur les représentations de Krammer génériques, Ann. Inst. Fourier (Grenoble) 57 (2007) 1883 · Zbl 1183.20036
[15] M Nazarov, Young’s orthogonal form for Brauer’s centralizer algebra, J. Algebra 182 (1996) 664 · Zbl 0868.20012
[16] H Wenzl, Hecke algebras of type \(A_n\) and subfactors, Invent. Math. 92 (1988) 349 · Zbl 0663.46055
[17] H Wenzl, On the structure of Brauer’s centralizer algebras, Ann. of Math. \((2)\) 128 (1988) 173 · Zbl 0656.20040
[18] H Wenzl, Quantum groups and subfactors of type \(B\), \(C\), and \(D\), Comm. Math. Phys. 133 (1990) 383 · Zbl 0744.17021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.