Jiao, Feng; Zhou, Yong Existence of solutions for a class of fractional boundary value problems via critical point theory. (English) Zbl 1235.34017 Comput. Math. Appl. 62, No. 3, 1181-1199 (2011). Summary: By the critical point theory, a new approach is provided to study the existence of solutions to the following fractional boundary value problem: \[ \begin{cases} \frac{d}{dt}\left(\frac 12{_0D_t^{-\beta}}(u'(t))+\frac 12{_tD_T^{-\beta}}(u'(t))\right)+\nabla F(t,u(t))=0\quad\text{a.e. }t\in[0,T],\\ u(0)=u(T)=0,\end{cases} \] where \(_0D_t^{-\beta}\) and \(_tD^{-\beta}_T\) are the left and right Riemann-Liouville fractional integrals of order \(0\leq\beta<1\) respectively, \(F:[0,T]\times\mathbb{R}^N\to\mathbb{R}\) is a given function and \(\nabla F(t,x)\) is the gradient of \(F\) at \(x\). The variational structure is established and various criteria on the existence of solutions are obtained. Cited in 1 ReviewCited in 131 Documents MSC: 34A08 Fractional ordinary differential equations 34B15 Nonlinear boundary value problems for ordinary differential equations 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces Keywords:fractional differential equations; boundary value problem; fractional advection; dispersion equation; critical point theory; existence PDF BibTeX XML Cite \textit{F. Jiao} and \textit{Y. Zhou}, Comput. Math. Appl. 62, No. 3, 1181--1199 (2011; Zbl 1235.34017) Full Text: DOI OpenURL References: [1] Diethelm, K.; Freed, A.D., On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity, (), 217-224 [2] Lundstrom, B.N.; Higgs, M.H.; Spain, W.J.; Fairhall, A.L., Fractional differentiation by neocortical pyramidal neurons, Nat. neurosci., 11, 1335-1342, (2008) [3] Glockle, W.G.; Nonnenmacher, T.F., A fractional calculus approach of self-similar protein dynamics, Biophys. J., 68, 46-53, (1995) [4] Hilfer, R., Applications of fractional calculus in physics, (2000), World Scientific Singapore · Zbl 0998.26002 [5] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, (), 291-348 · Zbl 0917.73004 [6] Kirchner, J.W.; Feng, X.; Neal, C., Fractal streamchemistry and its implications for contaminant transport in catchments, Nature, 403, 524-526, (2000) [7] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J., () [8] Miller, K.S.; Ross, B., An introduction to the fractional calculus and differential equations, (1993), John Wiley New York · Zbl 0789.26002 [9] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010 [10] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integral and derivatives: theory and applications, (1993), Gordon and Breach Longhorne, PA · Zbl 0818.26003 [11] Benson, D.A.; Schumer, R.; Meerschaert, M.M.; Wheatcraft, S.W., Fractional dispersion, Lévy motion, and the MADE tracer test, Transp. porous media, 42, 211-240, (2001) [12] Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M., Application of a fractional advection – dispersion equation, Water resour. res., 36, 1403-1412, (2000) [13] Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M., The fractional-order governing equation of Lévy motion, Water resour. res., 36, 1413-1423, (2000) [14] Lu, S.; Molz, F.J.; Fix, G.J., Possible problems of scale dependency in applications of the three-dimensional fractional advection – dispersion equation to natural porous media, Water resour. res., 38, 1165-1171, (2002) [15] Fix, G.J.; Roop, J.P., Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. math. appl., 48, 1017-1033, (2004) · Zbl 1069.65094 [16] Erwin, V.J.; Roop, J.P., Variational formulation for the stationary fractional advection dispersion equation, Numer. methods partial differential equations, 22, 58-76, (2006) [17] Cresson, J., Inverse problem of fractional calculus of variations for partial differential equations, Commun. nonlinear sci. numer. simul., 15, 987-996, (2010) · Zbl 1221.35447 [18] Belmekki, M.; Nieto, J.J.; Rodriguez-Lopez, R., Existence of periodic solution for a nonlinear fractional differential equation, Bound. value probl., (2009), Art. ID 324561, 18 pages · Zbl 1181.34006 [19] Tavazoei, M.S.; Haeri, M., A proof for non existence of periodic solutions in time invariant fractional order systems, Automatica, 45, 1886-1890, (2009) · Zbl 1193.34006 [20] Lakshmikantham, V.; Vatsala, A.S., Basic theory of fractional differential equations, Nonlinear anal. TMA, 69, 2677-2682, (2008) · Zbl 1161.34001 [21] Vasundhara Devi, J.; Lakshmikantham, V., Nonsmooth analysis and fractional differential equations, Nonlinear anal. TMA, 70, 4151-4157, (2009) · Zbl 1237.49022 [22] Zaslavsky, G., Fractional kinetic equation for Hamiltonian chaos, chaotic advection, tracer dynamics and turbulent dispersion, Physica D, 76, 110-122, (1994) · Zbl 1194.37163 [23] Zhou, Yong; Jiao, Feng; Li, Jing, Existence and uniqueness for \(p\)-type fractional neutral differential equations, Nonlinear anal. TMA, 71, 2724-2733, (2009) · Zbl 1175.34082 [24] Zhou, Yong; Jiao, Feng; Li, Jing, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear anal. TMA, 71, 3249-3256, (2009) · Zbl 1177.34084 [25] Zhou, Yong; Jiao, Feng, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear anal. RWA, 11, 4465-4475, (2010) · Zbl 1260.34017 [26] Wang, JinRong; Zhou, Yong, A class of fractional evolution equations and optimal controls, Nonlinear anal. RWA, 12, 262-272, (2011) · Zbl 1214.34010 [27] Agarwal, R.P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta appl. math., 109, 973-1033, (2010) · Zbl 1198.26004 [28] Benchohra, M.; Hamani, S.; Ntouyas, S.K., Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear anal. TMA, 71, 2391-2396, (2009) · Zbl 1198.26007 [29] Zhang, Shuqin, Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. math. appl., 59, 1300-1309, (2010) · Zbl 1189.34050 [30] Ahmad, B.; Nieto, J.J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. math. appl., 58, 1838-1843, (2009) · Zbl 1205.34003 [31] Mawhin, J.; Willem, M., Critical point theorey and Hamiltonian systems, (1989), Springer New York [32] Rabinowitz, P.H., () [33] Li, Fuyi; Liang, Zhangping; Zhang, Qi, Existence of solutions to a class of nonlinear second order two-point boundary value problems, J. math. anal. appl., 312, 357-373, (2005) · Zbl 1088.34012 [34] Corvellec, J.-N.; Motreanu, V.V.; Saccon, C., Doubly resonant semilinear elliptic problems via nonsmooth critical point theory, J. differential equations, 248, 2064-2091, (2010) · Zbl 1187.35083 [35] Tang, Chun-Lei; Wu, Xing-Ping, Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems, J. differential equations, 248, 660-692, (2010) · Zbl 1191.34053 [36] Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys. rev. E, 53, 1890-1899, (1996) [37] Klimek, M., Lagrangian and Hamiltonian fractional sequential mechanics, Czech. J. phys., 52, 1247-1253, (2002) · Zbl 1064.70013 [38] Agrawal, O.P., Formulation of euler – lagrange equations for fractional variational problems, J. math. anal. appl., 272, 368-379, (2002) · Zbl 1070.49013 [39] Rabei, E.M.; Nawafleh, K.I.; Hijjawi, R.S.; Muslih, S.I.; Baleanu, D., The Hamilton formalism with fractional derivatives, J. math. anal. appl., 327, 891-897, (2007) · Zbl 1104.70012 [40] Baleanu, D.; Golmankaneh, Ali Khalili; Golmankaneh, Alireza Khalili, The dual action of fractional multi time Hamilton equations, Internat. J. theoret. phys., 48, 2558-2569, (2009) · Zbl 1405.34005 [41] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.