zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity. (English) Zbl 1235.34027
Summary: We discuss the existence of positive solutions to the following fractional boundary value problem with changing sign nonlinearity. $$\cases D^\alpha_{0+}u(t)+\lambda f(t,u(t))=0,\ 0<t<1,\\ u(0)=u'(0)=u(1)=0.\endcases$$ where $2<\alpha\le 3$ is a real number, $D^\alpha_{0+}$ is the standard Riemann-Liouville derivative, $\lambda$ is a positive parameter, $f$ may change sign and may be singular at $t=0,1$.

34A08Fractional differential equations
34B18Positive solutions of nonlinear boundary value problems for ODE
34B16Singular nonlinear boundary value problems for ODE
Full Text: DOI
[1] Podlubny, I.: Fractional differential equations, Mathematics in science and engineering 198 (1999) · Zbl 0924.34008
[2] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integral and derivatives, theory and applications, (1993) · Zbl 0818.26003
[3] Agrawal, O. P.: Formulation of Euler--Lagrange equations for fractional variational problems, J. math. Anal. appl. 272, 368-379 (2002) · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4
[4] Lakshmikantham, V.; Vatsala, A. S.: General uniqueness and monotone iterative technique for fractional differential equations, Appl. math. Lett. 21, 828-834 (2008) · Zbl 1161.34031 · doi:10.1016/j.aml.2007.09.006
[5] Bhaskar, T. Gnana; Lakshmikantham, V.; Leela, S.: Fractional differential equations with a Krasnoselskii--Krein type condition, Nonlinear anal. Hybrid syst. 3, 734-737 (2009) · Zbl 1181.34008 · doi:10.1016/j.nahs.2009.06.010
[6] Bai, C.: Positive solutions for nonlinear fractional differential equations with cofficient that changes sign, Nonlinear anal. 64, 677-685 (2006) · Zbl 1152.34304 · doi:10.1016/j.na.2005.04.047
[7] Zhang, S.: Nonnegative solution for singular nonlinear fractional differential equation with cofficient that changes sign, Positivity 12, 711-724 (2006) · Zbl 1172.26306 · doi:10.1007/s11117-008-2030-4
[8] Bai, Z.; Lv, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation, J. math. Anal. appl. 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[9] Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem, Nonlinear anal. 72, 916-924 (2010) · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[10] Jiang, D.; Yuan, C.: The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear anal. 72, 710-719 (2010) · Zbl 1192.34008 · doi:10.1016/j.na.2009.07.012
[11] Liang, S.; Zhang, J.: Positive solutions for boundary value problems of fractional differential equation, Nonlinear anal. 71, 5545-5550 (2009) · Zbl 1185.26011 · doi:10.1016/j.na.2009.04.045
[12] Yuan, C.; Jiang, D.; Xu, X.: Singular positone and semipositone boundary value problems of nonlinear fractional differential equations, Math. probl. Eng. 2009 (2009) · Zbl 1185.34008 · doi:10.1155/2009/535209
[13] Guo, D.: Nonlinear functional analysis, (1985)
[14] Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040