zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Supersymmetric KdV-Sawada-Kotera-Ramani equation and its quasi-periodic wave solutions. (English) Zbl 1235.35242
Summary: In this Letter, we propose a supersymmetric KdV-Sawada-Kotera-Ramani equation. Based on a super-Riemann theta function, we devise a lucid and straightforward way for explicitly constructing a quasi-periodic wave solution of the supersymmetric KdV-Sawada-Kotera-Ramani equation. In addition, a one-soliton solution is obtained as a limiting case of the periodic wave solution under small amplitude. Indeed different from the purely bosonic case, the quasi-periodic wave observed shows that there is an “influencing band” among the waves under the presence of the Grassmann variable. The waves are symmetric about the band but collapse along with the band. Furthermore, the amplitudes of the waves increase as the waves move away from the band.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
81Q60Supersymmetry and quantum mechanics
14K25Theta-functions
35C07Traveling wave solutions of PDE
35C08Soliton solutions of PDE
14M15Grassmannians, Schubert varieties, flag manifolds
WorldCat.org
Full Text: DOI
References:
[1] Hirota, R.; Ito, M.: J. phys. Soc. jpn., J. phys. Soc. jpn. 52, 744 (1983)
[2] Konno, K.: J. phys. Soc. jpn., J. phys. Soc. jpn. 61, 51 (1992)
[3] Carstea, A. S.: Nonlinearity, Nonlinearity 13, 1645 (2000)
[4] Manin, Yu.I.; Radul, A. O.: Commun. math. Phys., Commun. math. Phys. 98, 65 (1985)
[5] Mathieu, P.: J. math. Phys., J. math. Phys. 29, 2499 (1988)
[6] Oevel, W.; Popowicz, Z.: Commun. math. Phys., Commun. math. Phys. 139, 441 (1991)
[7] Liu, Q. P.: Lett. math. Phys., Lett. math. Phys. 35, 115 (1995)
[8] Liu, Q. P.; Xie, Y. F.: Phys. lett. A, Phys. lett. A 325, 139 (2004)
[9] Liu, Q. P.; Hu, X. B.: J. phys. A, J. phys. A 38, 6371 (2005)
[10] Liu, Q. P.; Hu, X. B.; Zhang, M. X.: Nonlinearity, Nonlinearity 18, 1597 (2005)
[11] Yu, Y. X.: Commun. theor. Phys., Commun. theor. Phys. 49, 685 (2008)
[12] Tian, K.; Liu, Q. P.: Phys. lett. A, Phys. lett. A 373, 169 (2009)
[13] Hirota, R.; Satsuma, J.: Prog. theor. Phys., Prog. theor. Phys. 57, 797 (1977)
[14] Hirota, R.: Direct methods in soliton theory, (2004) · Zbl 1099.35111
[15] Hu, X. B.; Clarkson, P. A.: J. phys. A, J. phys. A 28, 5009 (1995)
[16] Hu, X. B.; Li, C. X.; Nimmo, J. J. C.; Yu, G. F.: J. phys. A, J. phys. A 38, 195 (2005)
[17] Hirota, R.; Ohta, Y.: J. phys. Soc. jpn., J. phys. Soc. jpn. 60, 798 (1991)
[18] Zhang, D. J.: J. phys. Soc. jpn., J. phys. Soc. jpn. 71, 2649 (2002)
[19] Sawada, K.; Kotera, T.: Prog. theor. Phys., Prog. theor. Phys. 51, 1355 (1974)
[20] Nakamura, A.: J. phys. Soc. jpn., J. phys. Soc. jpn. 47, 1701 (1979)
[21] Nakamura, A.: J. phys. Soc. jpn., J. phys. Soc. jpn. 48, 1365 (1980)
[22] Dai, H. H.; Fan, E. G.; Geng, X. G.:
[23] Zhang, Y.; Ye, L. Y.; Lv, Y. N.; Zhao, H. Q.: J. phys. A, J. phys. A 42, 095206 (2009)
[24] Hon, Y. C.; Fan, E. G.: Modern phys. Lett. B, Modern phys. Lett. B 22, 547 (2008)
[25] Fan, E. G.; Hon, Y. C.: Phys. rev. E, Phys. rev. E 78, 036607 (2008)
[26] Fan, E. G.: J. phys. A, J. phys. A 42, 095206 (2009)
[27] Ma, W. X.; Zhou, R. G.: J. math. Phys., J. math. Phys. 24, 1677 (2009)
[28] Rabin, J. M.; Freund, P. G. O.: Commun. math. Phys., Commun. math. Phys. 114, 131 (1988)