×

zbMATH — the first resource for mathematics

Lax operator algebras and integrable hierarchies. (English. Russian original) Zbl 1235.37022
Proc. Steklov Inst. Math. 263, 204-213 (2008); translation from Tr. Mat. Inst. Steklova 263, 216-226 (2008).
Summary: We study applications of a new class of infinite-dimensional Lie algebras, called Lax operator algebras, which goes back to the works by I. Krichever and S. Novikov on finite-zone integration related to holomorphic vector bundles and on Lie algebras on Riemann surfaces. Lax operator algebras are almost graded Lie algebras of current type. They were introduced by I. Krichever and the author as a development of the theory of Lax operators on Riemann surfaces due to I. Krichever, and further investigated in a joint paper by M. Schlichenmaier and the author. In this article we construct integrable hierarchies of Lax equations of that type.
MSC:
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
17B80 Applications of Lie algebras and superalgebras to integrable systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Garland, ”The Arithmetic Theory of Loop Groups,” Publ. Math., Inst. Hautes √Čtud. Sci. 52, 5–136 (1980). · Zbl 0475.17004 · doi:10.1007/BF02684779
[2] V. G. Kac, ”Simple Irreducible Graded Lie Algebras of Finite Growth,” Izv. Akad. Nauk SSSR, Ser. Mat. 32(6), 1323–1367 (1968) [Math. USSR, Izv. 2, 1271–1311 (1968)].
[3] V. G. Kac, Infinite Dimensional Lie Algebras (Cambridge Univ. Press, Cambridge, 1990). · Zbl 0716.17022
[4] I. M. Krichever, ”Vector Bundles and Lax Equations on Algebraic Curves,” Commun. Math. Phys. 229(2), 229–269 (2002). · Zbl 1073.14048 · doi:10.1007/s002200200659
[5] I. M. Krichever, ”Isomonodromy Equations on Algebraic Curves, Canonical Transformations and Whitham Equations,” Moscow Math. J. 2, 717–752 (2002); arXiv: hep-th/0112096. · Zbl 1044.70010
[6] I. M. Krichever and S. P. Novikov, ”Holomorphic Bundles over Algebraic Curves and Non-linear Equations,” Usp. Mat. Nauk 35(6), 47–68 (1980) [Russ. Math. Surv. 35 (6), 53–79 (1980)]. · Zbl 0501.35071
[7] I.M. Krichever and S. P. Novikov, ”Holomorphic Bundles over Riemann Surfaces and the Kadomtsev-Petviashvili Equation. I,” Funkts. Anal. Prilozh. 12(4), 41–52 (1978) [Funct. Anal. Appl. 12, 276–286 (1978)]. · Zbl 0393.35061
[8] I. M. Krichever, ”Commutative Rings of Ordinary Linear Differential Operators,” Funkts. Anal. Prilozh. 12(3), 20–31 (1978) [Funct. Anal. Appl. 12, 175–185 (1978)]. · Zbl 0405.58049 · doi:10.1007/BF01077560
[9] I. M. Krichever and S. P. Novikov, ”Algebras of Virasoro Type, Riemann Surfaces and Structures of the Theory of Solitons,” Funkts. Anal. Prilozh. 21(2), 46–63 (1987) [Funct. Anal. Appl. 21, 126–142 (1987)]. · Zbl 0634.17010
[10] I. M. Krichever and O. K. Sheinman, ”Lax Operator Algebras,” Funkts. Anal. Prilozh. 41(4), 46–59 (2007) [Funct. Anal. Appl. 41, 284–294 (2007)]; arXiv:math.RT/0701648. · Zbl 1160.17017 · doi:10.4213/faa2878
[11] R. V. Moody, ”Euclidean Lie Algebras,” Can. J. Math. 21, 1432–1454 (1969). · Zbl 0194.34402 · doi:10.4153/CJM-1969-158-2
[12] M. Schlichenmaier, ”Local Cocycles and Central Extensions for Multipoint Algebras of Krichever-Novikov Type,” J. Reine Angew. Math. 559, 53–94 (2003). · Zbl 1124.17305
[13] M. Schlichenmaier, ”Higher Genus Affine Algebras of Krichever-Novikov Type,” Moscow Math. J. 3, 1395–1427(2003). · Zbl 1115.17010
[14] M. Schlichenmaier and O. K. Sheinman, ”Central Extensions of Lax Operator Algebras,” arXiv: 0711.4688. · Zbl 1204.17016
[15] O. K. Sheinman, ”Affine Krichever-Novikov Algebras, Their Representations and Applications,” in Geometry, Topology, and Mathematical Physics: S.P. Novikov’s Seminar 2002–2003, Ed. by V. M. Buchstaber and I. M. Krichever (Am. Math. Soc., Providence, RI, 2004), AMS Transl., Ser. 2, 212, pp. 297–316; arXiv:math.RT/0304020. · Zbl 1081.17014
[16] O. K. Sheinman, ”On Certain Current Algebras Related to Finite-Zone Integration,” in Geometry, Topology, and Mathematical Physics: S.P. Novikov’s Seminar 2006–2007, Ed. by V. M. Buchstaber and I. M. Krichever (Am. Math. Soc., Providence, RI, 2008), AMS Transl., Ser. 2, 224, pp. 271–284. · Zbl 1196.17022
[17] A. N. Tyurin, ”Classification of Vector Bundles on an Algebraic Curve of an Arbitrary Genus,” Izv. Akad. Nauk SSSR, Ser. Mat. 29(3), 657–688 (1965).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.