Guijarro, Luis; Walschap, Gerard Submetries vs. submersions. (English) Zbl 1235.53038 Rev. Mat. Iberoam. 27, No. 2, 605-619 (2011). The authors study submetries between finite-dimensional Alexandrov spaces and show how some of the usual features of Riemannian submersions fail due to the Lack of smoothness. They give examples that show how some of the well-known splitting theorems for Riemannian submersions fail in the context of submetries. Also, they exhibit a submetry from a sphere with a locally flat metric everywhere except for a codimension one singular set. Reviewer: Chiung-Jue Sung (Hsinchu) Cited in 3 Documents MSC: 53C20 Global Riemannian geometry, including pinching Keywords:Alexandrov spaces; submetry; quasigeodesics; extremal sets PDF BibTeX XML Cite \textit{L. Guijarro} and \textit{G. Walschap}, Rev. Mat. Iberoam. 27, No. 2, 605--619 (2011; Zbl 1235.53038) Full Text: DOI arXiv Euclid References: [1] Berestovskii, V.: “Submetries” of three-dimensional forms of nonnegative curvature. Sibirsk. Mat. Zh. 28 (1987), no. 4, 44-56 (Russian). Siberian Math. J. 28 (1987), no. 4, 552-562 (English traslation). [2] Berestovskii, V. and Guijarro, L.: A metric characterization of Riemannian submersions. Ann. Global Anal. Geom. 18 (2000), no. 6, 577-588. · Zbl 0992.53025 [3] Burago, D., Burago, Y. and Ivanov, S.: A course in metric geometry . Graduate Studies in Mathematics 33 . American Mathematical Society, Providence, RI, 2001. · Zbl 0981.51016 [4] Guijarro, L. and Petersen, P.: Rigidity in non-negative curvature. Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 5, 595-603. · Zbl 1008.53042 [5] Hermann, R.: A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc. Amer. Math. Soc. 11 (1960), 236-242. JSTOR: · Zbl 0112.13701 [6] Lang, U. and Schroeder, V.: Kirszbraun’s theorem and metric spaces of bounded curvature. Geom. Funct. Anal. 7 (1997), 535-560. · Zbl 0891.53046 [7] Lytchak, A.: Open map theorem for metric spaces. Algebra i Analiz 17 (2005), no. 3, 139-159. Translation in St. Petersburg Math. J. 17 (2006), no. 3, 477-491. [8] Lytchak, A.: Submetrien von Alexandrov-Räumen . Part of the PhD. Thesis, available at: http://www.math.uni-bonn.de/people/lytchak/publications.html. [9] Perelman, G.: Alexandrov spaces with a lower curvature bound, II. Unpublished · JFM 62.0030.04 [10] Perelman, G. and Petrunin, A.: Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. Algebra i Analiz 5 (1993), no. 1, 242-256 (Russian). Translation in St. Petersburg Math. J. 5 (1994), no. 1, 215-227. · Zbl 0802.53019 [11] Petrunin, A.: Application of quasigeodesics and gradient curves. In Comparison geometry (Berkeley, CA, 1993-94) , 203-219. Math. Sci. Res. Inst. Publ. 30 . Cambridge Univ. Press, Cambridge, 1997. · Zbl 0892.53026 [12] Petrunin, A.: Semiconcave functions in Alexandrov’s geometry. In Surveys in differential geometry. Vol. XI , 137-201. Surv. Differ. Geom. 11 . Int. Press, Somerville, MA, 2007. · Zbl 1166.53001 [13] Walschap, G.: Metric foliations and curvature. J. Geom. Anal. 2 (1992), no. 4, 373-381. · Zbl 0769.53021 [14] Wilking, B.: A duality theorem for Riemannian foliations in nonnegative sectional curvature. Geom. Funct. Anal. 17 (2007), no. 4, 1297-1320. · Zbl 1139.53014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.