zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fixed point theorems for $\psi$-contractive mappings in ordered metric spaces. (English) Zbl 1235.54027
Summary: We obtain some new fixed point theorems for $\psi$-contractive mappings in ordered metric spaces. Our results generalize or improve many recent fixed point theorems in the literature (e.g., {\it J. Harjani}, {\it B. López} and {\it K. Sadarangani} [Abstr. Appl. Anal. 2010, Article ID 190701 (2010; Zbl 1203.54041); Comput. Math. Appl. 61, No. 4, 790--796 (2011; Zbl 1217.54046)]).

MSC:
54H25Fixed-point and coincidence theorems in topological spaces
54F05Linearly, generalized, and partial ordered topological spaces
54E50Complete metric spaces
54E40Special maps on metric spaces
WorldCat.org
Full Text: DOI
References:
[1] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integerales,” Fundamenta Mathematicae, vol. 3, pp. 133-181, 1922. · Zbl 48.0201.01
[2] L. B. Ćirić, “A generalization of Banach’s contraction principle,” Proceedings of the American Mathematical Society, vol. 45, no. 2, pp. 267-273, 1974. · Zbl 0291.54056 · doi:10.2307/2040075
[3] S. K. Chatterjea, “Fixed-point theorems,” Comptes Rendus de l’Académie Bulgare des Sciences, vol. 25, pp. 727-730, 1972. · Zbl 0274.54033
[4] B. S. Choudhury, “Unique fixed point theorem for weakly C-contractive mappings,” Kathmandu University Journal of Scinece, Engineering and Technology, vol. 5, no. 1, pp. 6-13, 2009.
[5] J. Harjani, B. López, and K. Sadarangani, “Fixed point theorems for weakly C-contractive mappings in ordered metric spaces,” Computers & Mathematics with Applications, vol. 61, no. 4, pp. 790-796, 2011. · Zbl 1217.54046 · doi:10.1016/j.camwa.2010.12.027
[6] J. Harjani, B. López, and K. Sadarangani, “A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space,” Abstract and Applied Analysis, vol. 2010, Article ID 190701, 8 pages, 2010. · Zbl 1203.54041 · doi:10.1155/2010/190701 · eudml:224499
[7] J. J. Nieto and R. Rodríguez-López, “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations,” Order, vol. 22, no. 3, pp. 223-239, 2005. · Zbl 1095.47013 · doi:10.1007/s11083-005-9018-5
[8] A. C. M. Ran and M. C. B. Reurings, “A fixed point theorem in partially ordered sets and some applications to matrix equations,” Proceedings of the American Mathematical Society, vol. 132, no. 5, pp. 1435-1443, 2004. · Zbl 1060.47056 · doi:10.1090/S0002-9939-03-07220-4