×

Sharp heat kernel estimates for relativistic stable processes in open sets. (English) Zbl 1235.60101

Summary: We establish sharp two-sided estimates for the transition densities of relativistic stable processes (i.e., for the heat kernels of the operators \(m - (m^{2/\alpha } - \Delta )^{\alpha /2}\)) in \(C^{1,1}\) open sets. Here, \(m > 0\) and \(\alpha \in \) (0, 2). The estimates are uniform in \(m \in (0, M\)] for each fixed \(M > 0\). Letting \(m \downarrow 0\), we recover the Dirichlet heat kernel estimates for \(\Delta ^{\alpha /2} := - ( - \Delta )^{\alpha /2}\) in \(C^{1,1}\) open sets obtained in [the authors, J. Eur. Math. Soc. (JEMS) 12, No. 5, 1307–1329 (2010; Zbl 1203.60114)]. Sharp two-sided estimates are also obtained for Green functions of relativistic stable processes in bounded \(C^{1,1}\) open sets.

MSC:

60J35 Transition functions, generators and resolvents
47G20 Integro-differential operators
60J75 Jump processes (MSC2010)
47D07 Markov semigroups and applications to diffusion processes

Citations:

Zbl 1203.60114
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aikawa, H., Kilpeläinen, T., Shanmugalingam, N. and Zhong, X. (2007). Boundary Harnack principle for p -harmonic functions in smooth Euclidean domains. Potential Anal. 26 281-301. · Zbl 1121.35060 · doi:10.1007/s11118-006-9036-y
[2] Barlow, M. T., Bass, R. F., Chen, Z.-Q. and Kassmann, M. (2009). Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361 1963-1999. · Zbl 1166.60045 · doi:10.1090/S0002-9947-08-04544-3
[3] Blumenthal, R. M. and Getoor, R. K. (1960). Some theorems on stable processes. Trans. Amer. Math. Soc. 95 263-273. · Zbl 0107.12401 · doi:10.2307/1993291
[4] Bogdan, K. (1997). The boundary Harnack principle for the fractional Laplacian. Studia Math. 123 43-80. · Zbl 0870.31009
[5] Bogdan, K. and Byczkowski, T. (2000). Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Statist. 20 293-335. · Zbl 0996.31003
[6] Bogdan, K., Grzywny, T. and Ryznar, M. (2010). Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. Ann. Probab. 38 1901-1923. · Zbl 1204.60074 · doi:10.1214/10-AOP532
[7] Byczkowski, T., Małecki, J. and Ryznar, M. (2009). Bessel potentials, hitting distributions and Green functions. Trans. Amer. Math. Soc. 361 4871-4900. · Zbl 1181.60121 · doi:10.1090/S0002-9947-09-04657-1
[8] Carmona, R., Masters, W. C. and Simon, B. (1990). Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91 117-142. · Zbl 0716.35006 · doi:10.1016/0022-1236(90)90049-Q
[9] Chen, Z.-Q. (2009). Symmetric jump processes and their heat kernel estimates. Sci. China Ser. A 52 1423-1445. · Zbl 1186.60073 · doi:10.1007/s11425-009-0100-0
[10] Chen, Z.-Q., Kim, P. and Kumagai, T. (2008). Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342 833-883. · Zbl 1156.60069 · doi:10.1007/s00208-008-0258-8
[11] Chen, Z.-Q., Kim, P. and Kumagai, T. (2009). On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces. Acta Math. Sin. ( Engl. Ser. ) 25 1067-1086. · Zbl 1171.60373 · doi:10.1007/s10114-009-8576-7
[12] Chen, Z. Q., Kim, P. and Kumagai, T. (2011). Global heat kernel estimates for symmetric jump processes. Trans. Amer. Math. Soc. 363 5021-5055. · Zbl 1234.60088 · doi:10.1090/S0002-9947-2011-05408-5
[13] Chen, Z. Q., Kim, P. and Song, R. (2010). Green function estimates for relativistic stable processes in half-space-like open sets. · Zbl 1235.60100 · doi:10.1016/j.spa.2011.01.004
[14] Chen, Z.-Q., Kim, P. and Song, R. (2010). Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc. ( JEMS ) 12 1307-1329. · Zbl 1203.60114 · doi:10.4171/JEMS/231
[15] Chen, Z.-Q., Kim, P. and Song, R. (2010). Two-sided heat kernel estimates for censored stable-like processes. Probab. Theory Related Fields 146 361-399. · Zbl 1190.60068 · doi:10.1007/s00440-008-0193-3
[16] Chen, Z.-Q. and Kumagai, T. (2003). Heat kernel estimates for stable-like processes on d -sets. Stochastic Process. Appl. 108 27-62. · Zbl 1075.60556 · doi:10.1016/S0304-4149(03)00105-4
[17] Chen, Z.-Q. and Kumagai, T. (2008). Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140 277-317. · Zbl 1131.60076 · doi:10.1007/s00440-007-0070-5
[18] Chen, Z.-Q. and Song, R. (1998). Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 312 465-501. · Zbl 0918.60068 · doi:10.1007/s002080050232
[19] Chen, Z.-Q. and Song, R. (2003). Conditional gauge theorem for non-local Feynman-Kac transforms. Probab. Theory Related Fields 125 45-72. · Zbl 1025.60032 · doi:10.1007/s004400200219
[20] Chen, Z.-Q. and Song, R. (2003). Drift transforms and Green function estimates for discontinuous processes. J. Funct. Anal. 201 262-281. · Zbl 1031.60071 · doi:10.1016/S0022-1236(03)00087-9
[21] Chen, Z.-Q. and Song, R. (2005). Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226 90-113. · Zbl 1081.60056 · doi:10.1016/j.jfa.2005.05.004
[22] Chen, Z.-Q. and Song, R. (2006). Continuity of eigenvalues of subordinate processes in domains. Math. Z. 252 71-89. · Zbl 1090.60070 · doi:10.1007/s00209-005-0845-2
[23] Chen, Z. Q. and Tokle, J. (2010). Global heat kernel estimates for fractional Laplacians in unbounded open sets. Probab. Theory Related Fields . DOI: . · Zbl 1231.60078 · doi:10.1007/s00440-009-0256-0
[24] Chung, K. L. and Zhao, Z. X. (1995). From Brownian Motion to Schrödinger’s Equation. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 312 . Springer, Berlin. · Zbl 0819.60068
[25] Dall’Acqua, A., Sørensen, T. Ø. and Stockmeyer, E. (2008). Hartree-Fock theory for pseudorelativistic atoms. Ann. Henri Poincaré 9 711-742. · Zbl 1192.81406 · doi:10.1007/s00023-008-0370-z
[26] Fefferman, C. and de la Llave, R. (1986). Relativistic stability of matter. I. Rev. Mat. Iberoamericana 2 119-213. · Zbl 0602.58015 · doi:10.4171/RMI/30
[27] Frank, R. L., Lieb, E. H. and Seiringer, R. (2007). Stability of relativistic matter with magnetic fields for nuclear charges up to the critical value. Comm. Math. Phys. 275 479-489. · Zbl 1135.81030 · doi:10.1007/s00220-007-0307-2
[28] Frank, R. L., Lieb, E. H. and Seiringer, R. (2008). Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Amer. Math. Soc. 21 925-950. · Zbl 1202.35146 · doi:10.1090/S0894-0347-07-00582-6
[29] Grzywny, T. and Ryznar, M. (2007). Estimates of Green functions for some perturbations of fractional Laplacian. Illinois J. Math. 51 1409-1438. · Zbl 1152.60060
[30] Grzywny, T. and Ryznar, M. (2008). Two-sided optimal bounds for Green functions of half-spaces for relativistic \alpha -stable process. Potential Anal. 28 201-239. · Zbl 1146.60059 · doi:10.1007/s11118-007-9071-3
[31] Herbst, I. W. (1977). Spectral theory of the operator ( p 2 + m 2 ) 1/2 - Ze 2 / r. Comm. Math. Phys. 53 285-294. · Zbl 0375.35047 · doi:10.1007/BF01609852
[32] Kim, P. (2006). Relative Fatou’s theorem for ( - \Delta ) \alpha /2 -harmonic functions in bounded \kappa -fat open sets. J. Funct. Anal. 234 70-105. · Zbl 1100.31008 · doi:10.1016/j.jfa.2005.12.001
[33] Kim, P. and Lee, Y.-R. (2007). Generalized 3G theorem and application to relativistic stable process on non-smooth open sets. J. Funct. Anal. 246 113-143. · Zbl 1131.60042 · doi:10.1016/j.jfa.2007.02.001
[34] Kulczycki, T. (1997). Properties of Green function of symmetric stable processes. Probab. Math. Statist. 17 339-364. · Zbl 0903.60063
[35] Kulczycki, T. and Siudeja, B. (2006). Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes. Trans. Amer. Math. Soc. 358 5025-5057. · Zbl 1112.47034 · doi:10.1090/S0002-9947-06-03931-6
[36] Lieb, E. H. (1976). The stability of matter. Rev. Modern Phys. 48 553-569. · doi:10.1103/RevModPhys.48.553
[37] Lieb, E. H. and Yau, H.-T. (1988). The stability and instability of relativistic matter. Comm. Math. Phys. 118 177-213. · Zbl 0686.35099 · doi:10.1007/BF01218577
[38] Østergaard Sørensen, T. (2005). The large- Z behavior of pseudorelativistic atoms. J. Math. Phys. 46 052307, 24. · Zbl 1110.81162 · doi:10.1063/1.1897645
[39] Ryznar, M. (2002). Estimates of Green function for relativistic \alpha -stable process. Potential Anal. 17 1-23. · Zbl 1004.60047 · doi:10.1023/A:1015231913916
[40] Sztonyk, P. (2000). On harmonic measure for Lévy processes. Probab. Math. Statist. 20 383-390. · Zbl 0991.60067
[41] Sztonyk, P. (2010). Estimates of tempered stable densities. J. Theoret. Probab. 23 127-147. · Zbl 1393.60050 · doi:10.1007/s10959-009-0208-8
[42] Weder, R. A. (1975). Spectral analysis of pseudodifferential operators. J. Funct. Anal. 20 319-337. · Zbl 0317.47035 · doi:10.1016/0022-1236(75)90038-5
[43] Zolotarev, V. M. (1986). One-dimensional Stable Distributions. Translations of Mathematical Monographs 65 . Amer. Math. Soc., Providence, RI. · Zbl 0589.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.