zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A generalized Cauchy process having cubic nonlinearity. (English) Zbl 1235.62122
Summary: A generalized Cauchy process with a cubic nonlinear term (a nonlinear friction) is studied under the influence of independent multiplicative and additive Gaussian-white noise. Three methods of parameter estimation (i.e., maximum likelihood, moment and log-amplitude moment) are presented in detail. The effect of nonlinearity-noise mterplay associated with the nonlinear friction under the influences of both multiplicative and additive noises are discussed in conjunction with fluctuation-dissipation theorem. The physical significance of nonlinear friction is demonstrated with the use of time series data in economics and fluid turbulence.

62M09Non-Markovian processes: estimation
62M10Time series, auto-correlation, regression, etc. (statistics)
Full Text: DOI
[1] Schleginger, M. F.; Zaslavsky, G. M.; Frich, U.: Lévy flights and related topics in physics. (1995)
[2] Sinai, Ya. G.; Yakhot, V.: Phys. rev. Lett.. 63, 1962-1965 (1989)
[3] Casting, B.; Gange, Y.; Hopfinger, E. J.: Physica. D. D.. 46, 177-200 (1990)
[4] Kiyono, K.; Struzik, Z. R.; Togo, F.; Yamamoto, Y.: Phys. rev lett.. 95, 1-4 (2005)
[5] Wong, E.: Proc. amer math. Soc. symp. Appl. math.. 16, 264-276 (1963)
[6] Konno, H.; Watanabe, F.: J. math. Phys.. 48, 1-19 (2007)
[7] Tsallis, C.: Phys. rev. Lett.. 75, 3589-3592 (1995)
[8] Beck, C.: Physica. A.. 277, 115-123 (2000)
[9] Amari, S.; Nagaoka, H.: Methods of information geometry. (2000) · Zbl 0960.62005
[10] Jia, Ya; Li, Jia-Rong: Phys. rev. Lett.. 78, 994-997 (1997)
[11] Liang, G. Y.; Cao, L.; Wu, D. J.: Phys. lett. A.. 294, 190-198 (2002)
[12] Liang, G. Y.; Cao, L.; Wu, D. J.: Physica A. 335, 371-384 (2004)
[13] Amold, L.: Random dynamical systems. (1998)
[14] Hormsenke, W.; Lefever, R.: Noise induced transitions. (1984)
[15] Kobayashi, K.: J. phys. Soc. jpn.. 60, 1501-1512 (1991)
[16] Agarwal, S. K.; Kalla, S. L.: Commun. statist. --- theory and methods. 25, 201-210 (1996)
[17] Gupta, R. C.; Ong, S. H.: Computational statistics and data analysis. 45, 287-300 (2004)
[18] Porta, A. La.; Voth, G. A.; Crawford, A. M.; Alexander, J.; Bodenschatz, E.: Nature. 409, 1017-1020 (2001)
[19] Mordant, N.; Crawford, A. M.; Bodenschatz, E.: Physica D. 193, 245-251 (2004)
[20] Beck, C.: Phys. rev. Lett.. 87, 1-4 (2001)
[21] Arimitsu, T.; Arimitsu, N.: Physica D. 193, 218-230 (2004)
[22] Reynords, A. M.: Phys. fluids.. 15, L1-L4 (2003)
[23] Mantegna, R. N.; Stanley, H. E.: Nature. 376, 46-49 (1995)
[24] Mantegna, R. N.; Stanley, H. E.: Introduction to econophysics. (2000) · Zbl 1138.91300
[25] Kubo, R.; Toda, M.; Hashitsume, N.: Nonequilibrium statistical mechanics. (1991) · Zbl 0757.60109
[26] Harada, T.; Sasa, S.: Phys. rev. Lett.. 95, 130621-130624 (2005)
[27] Sakaguchi, H.: J. phys. Soc. jpn.. 70, 3247-3250 (2001)
[28] Kiyono, K.: Journal of physics: conference series. 221, 0120101-0120105 (2010)
[29] Lubashevsky, I.; Heuer, A.; Friedrich, R.; Usmanov, R.: Eur phys. J B. 78, 207-216 (2010)