zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Implicit schemes for solving extended general nonconvex variational inequalities. (English) Zbl 1235.65069
Summary: We suggest and analyze some implicit iterative methods for solving the extended general nonconvex variational inequalities using the projection technique. We show that the convergence of these iterative methods requires only the $gh$-pseudomonotonicity, which is a weaker condition than $gh$-monotonicity. We also discuss several special cases. Our method of proof is very simple as compared with other techniques.

MSC:
65K05Mathematical programming (numerical methods)
49J40Variational methods including variational inequalities
WorldCat.org
Full Text: DOI
References:
[1] M. A. Noor, “Extended general variational inequalities,” Applied Mathematics Letters, vol. 22, no. 2, pp. 182-186, 2009. · Zbl 1163.49303 · doi:10.1016/j.aml.2008.03.007
[2] M. Noor, “Auxiliary principle technique for extended general variational inequalities,” Banach Journal of Mathematical Analysis, vol. 2, no. 1, pp. 33-39, 2008. · Zbl 1138.49016 · emis:journals/BJMA/v2n1.html · eudml:54150
[3] M. A. Noor, “Sensitivity analysis of extended general variational inequalities,” Applied Mathematics E-Notes, vol. 9, pp. 17-26, 2009. · Zbl 1158.49028 · emis:journals/AMEN/2009/2009.htm · eudml:55232
[4] M. A. Noor, “Projection iterative methods for extended general variational inequalities,” Journal of Applied Mathematics and Computing, vol. 32, no. 1, pp. 83-95, 2010. · Zbl 1190.49036 · doi:10.1007/s12190-009-0234-9
[5] M. A. Noor, “Solvability of extended general mixed variational inequalities,” Albanian Journal of Mathematics, vol. 4, no. 1, pp. 13-17, 2010. · Zbl 1221.49014 · http://journals.aulonapress.com/index.php/ajm/article/view/222
[6] M. A. Noor, “Extended general quasi-variational inequalities,” Nonlinear Analysis Forum, vol. 15, pp. 33-39, 2010. · Zbl 1290.49020
[7] A. Bnouhachem and M. A. Noor, “Inexact proximal point method for general variational inequalities,” Journal of Mathematical Analysis and Applications, vol. 324, no. 2, pp. 1195-1212, 2006. · Zbl 1101.49026 · doi:10.1016/j.jmaa.2006.01.014
[8] M. Bounkhel, L. Tadj, and A. Hamdi, “Iterative schemes to solve nonconvex variational problems,” JIPAM: Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, 14 pages, 2003. · Zbl 1045.58014 · emis:journals/JIPAM/v4n1/index.html · eudml:123768
[9] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory, vol. 178 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1998. · Zbl 1047.49500
[10] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, vol. 31 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 2000. · Zbl 0988.49003 · doi:10.1137/1.9780898719451
[11] G. M. Korpelevi\vc, “An extragradient method for finding saddle points and for other problems,” Èkonomika i Matematicheskie Metody, vol. 12, no. 4, pp. 747-756, 1976. · Zbl 0342.90044
[12] Q. Liu and J. Cao, “A recurrent neural network based on projection operator for extended general variational inequalities,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 40, no. 3, pp. 928-938, 2010. · doi:10.1109/TSMCB.2009.2033565
[13] Q. Liu and Y. Yang, “Global exponential system of projection neural networks for system of generalized variational inequalities and related nonlinear minimax problems,” Neurocomputing, vol. 73, no. 10-12, pp. 2069-2076, 2010. · doi:10.1016/j.neucom.2010.03.009
[14] M. A. Noor, “General variational inequalities,” Applied Mathematics Letters, vol. 1, no. 2, pp. 119-122, 1988. · Zbl 0655.49005 · doi:10.1016/0893-9659(88)90054-7
[15] M. A. Noor, “New approximation schemes for general variational inequalities,” Journal of Mathematical Analysis and Applications, vol. 251, no. 1, pp. 217-229, 2000. · Zbl 0964.49007 · doi:10.1006/jmaa.2000.7042
[16] M. Noor, “Some developments in general variational inequalities,” Applied Mathematics and Computation, vol. 152, no. 1, pp. 199-277, 2004. · Zbl 1134.49304 · doi:10.1016/S0096-3003(03)00558-7
[17] M. A. Noor, “Iterative schemes for nonconvex variational inequalities,” Journal of Optimization Theory and Applications, vol. 121, no. 2, pp. 385-395, 2004. · Zbl 1062.49009 · doi:10.1023/B:JOTA.0000037410.46182.e2
[18] M. A. Noor, “Differentiable non-convex functions and general variational inequalities,” Applied Mathematics and Computation, vol. 199, no. 2, pp. 623-630, 2008. · Zbl 1147.65047 · doi:10.1016/j.amc.2007.10.023
[19] M. A. Noor, “Some iterative methods for solving nonlinear equations using homotopy perturbation method,” International Journal of Computer Mathematics, vol. 87, no. 1-3, pp. 141-149, 2010. · Zbl 1182.65079 · doi:10.1080/00207160801969513
[20] M. A. Noor, “Some classes of general nonconvex variational inequalities,” Albanian Journal of Mathematics, vol. 3, no. 4, pp. 175-188, 2009. · Zbl 1213.49018 · http://x.kerkoje.com/index.php/ajm/article/viewArticle/168
[21] M. A. Noor, “Nonconvex quasi variational inequalities,” Journal of Advanced Mathematical Studies, vol. 3, no. 1, pp. 59-72, 2010. · Zbl 1206.49011
[22] M. A. Noor, “Projection methods for nonconvex variational inequalities,” Optimization Letters, vol. 3, no. 3, pp. 411-418, 2009. · Zbl 1171.58307 · doi:10.1007/s11590-009-0121-1
[23] M. A. Noor, “Implicit iterative methods for nonconvex variational inequalities,” Journal of Optimization Theory and Applications, vol. 143, no. 3, pp. 619-624, 2009. · Zbl 1187.90297 · doi:10.1007/s10957-009-9567-7
[24] M. A. Noor, “Iterative methods for general nonconvex variational inequalities,” Albanian Journal of Mathematics, vol. 3, no. 3, pp. 117-127, 2009. · Zbl 1213.49017 · http://x.kerkoje.com/index.php/ajm/article/viewArticle/134
[25] M. A. Noor, “An extragradient algorithm for solving general nonconvex variational inequalities,” Applied Mathematics Letters, vol. 23, no. 8, pp. 917-921, 2010. · Zbl 1193.49008 · doi:10.1016/j.aml.2010.04.011
[26] M. A. Noor, “On an implicit method for nonconvex variational inequalities,” Journal of Optimization Theory and Applications, vol. 147, no. 2, pp. 411-417, 2010. · Zbl 1202.90253 · doi:10.1007/s10957-010-9717-y
[27] M. A. Noor, “Some iterative methods for general nonconvex variational inequalities,” Mathematical and Computer Modelling, vol. 54, no. 11-12, pp. 2955-2961, 2011. · Zbl 1235.65073 · doi:10.1016/j.mcm.2011.07.017
[28] M. A. Noor, “Some aspects of variational inequalities,” Journal of Computational and Applied Mathematics, vol. 47, no. 3, pp. 285-312, 1993. · Zbl 0788.65074 · doi:10.1016/0377-0427(93)90058-J
[29] M. A. Noor, K. I. Noor, and E. Al-Said, “Iterative projection methods for general nonconvex variational inequalities,” Applied and Computational Mathematics, vol. 10, no. 2, pp. 309-320, 2011. · Zbl 1225.49017 · doi:10.1080/00036810903438455
[30] M. Noor, S. Ullah, K. Noor, and E. Al-Said, “Iterative methods for solving extended general mixed variational inequalities,” Computers & Mathematics with Applications, vol. 62, no. 2, pp. 804-813, 2011. · Zbl 1228.65104 · doi:10.1016/j.camwa.2011.06.010
[31] M. Sun, “Merit functions and equivalent differentiable optimization problems for the extended general variational inequalities,” International Journal of Pure and Applied Mathematics, vol. 63, no. 1, pp. 39-49, 2010. · Zbl 1213.90233 · doi:10.1002/cpa.20296
[32] R. A. Poliquin, R. T. Rockafellar, and L. Thibault, “Local differentiability of distance functions,” Transactions of the American Mathematical Society, vol. 352, no. 11, pp. 5231-5249, 2000. · Zbl 0960.49018 · doi:10.1090/S0002-9947-00-02550-2
[33] G. Stampacchia, “Formes bilinéaires coercitives sur les ensembles convexes,” Comptes Rendus de l’Académie des Sciences. Série I, vol. 258, pp. 4413-4416, 1964. · Zbl 0124.06401
[34] M. A. Noor, K. I. Noor, and E. Al-Said, “Iterative methods for solving the nonconvex variational equilibrium variational inequalities,” Applied Mathematics and Information Science, vol. 6, no. 1, pp. 65-69, 2012. · Zbl 1244.65084
[35] M. A. Noor, “Some aspects of extended general variational inequalities,” Abstract and Applied Analysis. In press.