×

Vortex streets on a sphere. (English) Zbl 1235.76018

Summary: We consider flows on a spherical surface and use a transformation to transport some well-known periodic two-dimensional vortex streets to that spherical surface to arrive at some new expressions for vortex streets on a sphere.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] H. Helmholtz, “Über Integrale der hydrodynamishen Gleichgungen entsprechen,” Journal für die Reine und Angewandte Mathematik, vol. 55, pp. 25-55, 1858. · ERAM 055.1448cj
[2] G. Kirchhoff, Vorlesungen über Matematische Physik, Mechanik, Lecture 20, Teubner, Leipzig, Germany, 1877. · JFM 09.0597.01
[3] C. C. Lin, On the Motion of Vortices in Two Dimensions, University of Toronto Studies, Applied Mathematics Series, no. 5, University of Toronto Press, Toronto, Canada, 1943. · Zbl 0063.03561
[4] J. C. Maxwell, Electricity and Magnetism, Oxford, UK, 1873. · JFM 05.0556.01
[5] T. von Kármán, “Über den mechanismus des widerstandes, den ein bewegter Körper in einer Flussigkeit erfahrt,” Gotinger Nachrichten, Mathphys. Kl., pp. 547-556, 1912. · JFM 43.0854.01
[6] H. Lamb, Hydrodynamics, Dover, Cambridge, UK, 1932. · JFM 58.1298.04
[7] L. M. Milne-Thomson, Theoretical Hydrodynamics, MacMillan, London, UK, 1968. · Zbl 0164.55802
[8] I. S. Gromeka, “On vortex motions of liquid on a sphere. Uchenye Zapiski Imperatorskogo Kazanskogo Universiteta,” Scientific Notes of the Imperial Kazan University, vol. 3, pp. 202-236, 1885 (Russian), See also Collected Papers, Moscow Akademii Nauk, USSR, 1952.
[9] D. Hally, “Stability of streets of vortices on surfaces of revolution with a reflection symmetry,” Journal of Mathematical Physics, vol. 21, no. 1, pp. 211-217, 1980. · Zbl 0446.76027
[10] V. A. Bogomolov, “Two-dimensional fluid dynamics on a sphere,” Izvestiya, Academy of Sciences, USSR, Atmospheric, vol. 15, pp. 18-22, 1979.
[11] Y. Kimura, “Vortex motion on surfaces with constant curvature,” The Royal Society of London. Proceedings, vol. 455, no. 1981, pp. 245-259, 1999. · Zbl 0966.53046
[12] Y. Kimura and H. Okamoto, “Vortex motion on a sphere,” Journal of the Physical Society of Japan, vol. 56, no. 12, pp. 4203-4206, 1987.
[13] H. Aref, P. Newton, M. Stremler, T. Tokieda, and D. L. Vainchtein, “Vortex crystals,” Advances in Applied Mechanics, vol. 39, pp. 1-79, 2003.
[14] M. T. Dibattista and L. M. Polvani, “Barotropic vortex pairs on a rotating sphere,” Journal of Fluid Mechanics, vol. 358, pp. 107-133, 1998. · Zbl 0908.76096
[15] D. G. Dritschel, “Contour dynamics/surgery on the sphere,” Journal of Computational Physics, vol. 79, pp. 477-483, 1988. · Zbl 0655.76018
[16] L. M. Polvani and D. G. Dritschel, “Wave and vortex dynamics on the surface of a sphere,” Journal of Fluid Mechanics, vol. 255, pp. 35-64, 1993. · Zbl 0793.76022
[17] J. T. Stuart, “On finite amplitude oscillations in laminar mixing layers,” Journal of Fluid Mechanics, vol. 29, pp. 417-440, 1967. · Zbl 0152.45403
[18] R. Mallier and S. A. Maslowe, “A row of counter-rotating vortices,” Physics of Fluids A., vol. 5, no. 4, pp. 1074-1075, 1993. · Zbl 0778.76022
[19] G. Alobaidi, M. C. Haslam, and R. Mallier, “Vortices on a sphere,” Mathematical Modelling and Analysis, vol. 11, no. 4, pp. 357-364, 2006. · Zbl 1116.76016
[20] M. C. Haslam and R. Mallier, “Vortices on a cylinder,” Physics of Fluids, vol. 15, no. 7, pp. 2087-2088, 2003. · Zbl 1186.76215
[21] W. T. M. Verkley, “The construction of barotropic modons on a sphere,” Journal of the Atmospheric Sciences, vol. 41, no. 16, pp. 2492-2504, 1984.
[22] W. T. M. Verkley, “Nonlinear structures with multivalued (q, \theta ) relationships-exact solutions of the barotropic vorticity equation on a sphere,” Geophysical and Astrophysical Fluid Dynamics, vol. 69, pp. 77-94, 1993.
[23] D. G. Crowdy, “Stuart vortices on a sphere,” Journal of Fluid Mechanics, vol. 498, pp. 381-402, 2004. · Zbl 1059.76012
[24] D. Crowdy and M. Cloke, “Analytical solutions for distributed multipolar vortex equilibria on a sphere,” Physics of Fluids, vol. 15, no. 1, pp. 22-34, 2003. · Zbl 1185.76097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.