zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On new numerical techniques for the MHD flow past a shrinking sheet with heat and mass transfer in the presence of a chemical reaction. (English) Zbl 1235.76108
Summary: We use recent innovative solution techniques to investigate the problem of MHD viscous flow due to a shrinking sheet with a chemical reaction. A comparison is made of the convergence rates, ease of use, and expensiveness (the number of iterations required to give convergent results) of three seminumerical techniques in solving systems of nonlinear boundary value problems. The results were validated using a multistep, multimethod approach comprising the use of the shooting method, the {\tt Matlab bvp4c} numerical routine, and with results in the literature.

MSC:
76M25Other numerical methods (fluid mechanics)
76W05Magnetohydrodynamics and electrohydrodynamics
76X05Ionized gas flow in electromagnetic fields; plasmic flow
92E99Applications of mathematics to chemistry
Software:
Matlab; bvp4c
WorldCat.org
Full Text: DOI
References:
[1] N. Bachok, A. Ishak, and I. Pop, “Unsteady three-dimensional boundary layer flow due to a permeable shrinking sheet,” Applied Mathematics and Mechanics, vol. 31, no. 11, pp. 1421-1428, 2010. · Zbl 05837917 · doi:10.1007/s10483-010-1372-6
[2] T.-G. Fang, J. Zhang, and S. S. Yao, “Slip magnetohydrodynamic viscous flow over a permeable shrinking sheet,” Chinese Physics Letters, vol. 27, no. 12, article 124702, 2010. · doi:10.1088/0256-307X/27/12/124702
[3] T. Fang, S. Yao, J. Zhang, and A. Aziz, “Viscous flow over a shrinking sheet with a second order slip flow model,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 7, pp. 1831-1842, 2010. · Zbl 1222.76028 · doi:10.1016/j.cnsns.2009.07.017
[4] T. Fang and J. Zhang, “Closed-form exact solutions of MHD viscous flow over a shrinking sheet,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 7, pp. 2853-2857, 2009. · Zbl 1221.76142 · doi:10.1016/j.cnsns.2008.10.005
[5] Muhaimin, R. Kandasamy, and A. B. Khamis, “Effects of heat and mass transfer on nonlinear MHD boundary layer flow over a shrinking sheet in the presence of suction,” Applied Mathematics and Mechanics, vol. 29, no. 10, pp. 1309-1317, 2008. · Zbl 05573878 · doi:10.1007/s10483-008-1006-z
[6] N. F. M. Noor, S. Awang Kechil, and I. Hashim, “Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 2, pp. 144-148, 2010. · Zbl 1221.76154 · doi:10.1016/j.cnsns.2009.03.034
[7] N. F. Mohd and I. Hashim, “MHD flow and heat transfer adjacent to a permeable shrinking sheet embedded in a porous medium,” Sains Malaysiana, vol. 38, no. 4, pp. 559-565, 2009. · Zbl 1245.76158
[8] S. Nadeem and A. Hussain, “MHD flow of a viscous fluid on a nonlinear porous shrinking sheet with homotopy analysis method,” Applied Mathematics and Mechanics, vol. 30, no. 12, pp. 1569-1578, 2009. · Zbl 05678926 · doi:10.1007/s10483-009-1208-6
[9] Muhaimin, R. Kandasamy, I. Hashim, and A. B. Khamis, “On the effect of chemical reaction, heat and mass transfer on nonlinear MHD boundary layer past a porous shrinking sheet with suction,” Theoretical and Applied Mechanics, vol. 36, no. 2, pp. 101-117, 2009. · Zbl 1187.76772 · doi:10.2298/TAM0902101M
[10] S. Abbasbandy, “A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method,” Chaos, Solitons and Fractals, vol. 31, no. 1, pp. 257-260, 2007. · doi:10.1016/j.chaos.2005.10.071
[11] N. S. Elgazery, “Numerical solution for the Falkner-Skan equation,” Chaos, Solitons and Fractals, vol. 35, no. 4, pp. 738-746, 2008. · Zbl 1135.76039 · doi:10.1016/j.chaos.2006.05.040
[12] B. L. Kuo, “Heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation method,” International Journal of Heat and Mass Transfer, vol. 48, no. 23-24, pp. 5036-5046, 2005. · Zbl 1189.76141 · doi:10.1016/j.ijheatmasstransfer.2003.10.046
[13] A. Wazwaz, “The variational iteration method for solving two forms of Blasius equation on a half-infinite domain,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 485-491, 2007. · Zbl 1114.76055 · doi:10.1016/j.amc.2006.10.009
[14] S. J. Liao, Beyond Perturbation, Introduction to Homotopy Analysis Method, Chapman & Hall, Boca Raton, Fla, USA, 2003. · Zbl 1051.76001 · doi:10.1201/9780203491164
[15] B. Yao and J. Chen, “A new analytical solution branch for the Blasius equation with a shrinking sheet,” Applied Mathematics and Computation, vol. 215, no. 3, pp. 1146-1153, 2009. · Zbl 1172.76011 · doi:10.1016/j.amc.2009.06.057
[16] B. Yao and J. Chen, “Series solution to the Falkner-Skan equation with stretching boundary,” Applied Mathematics and Computation, vol. 208, no. 1, pp. 156-164, 2009. · Zbl 1156.76022 · doi:10.1016/j.amc.2008.11.028
[17] A. A. Joneidi, G. Domairry, M. Babaelahi, and M. Mozaffari, “Analytical treatment on magnetohydrodynamic (MHD) flow and heat transfer due to a stretching hollow cylinder,” International Journal for Numerical Methods in Fluids, vol. 63, no. 5, pp. 548-563, 2010. · Zbl 05706886
[18] A. R. Noiey, N. Haghparast, M. Miansari, and D. D. Ganji, “Application of homotopy perturbation method to the MHD pipe flow of a fourth grade fluid,” Journal of Physics, vol. 96, no. 1, 2008. · doi:10.1088/1742-6596/96/1/012079
[19] M. Jalaal and D. D. Ganji, “An analytical study on motion of a sphere rolling down an inclined plane submerged in a Newtonian fluid,” Powder Technology, vol. 198, no. 1, pp. 82-92, 2010. · doi:10.1016/j.powtec.2009.10.018
[20] M. Jalaal, D. D. Ganji, and G. Ahmadi, “An analytical study on settling of non-spherical particles,” Asia-Pacific Journal of Chemical Engineering, 2010. · doi:10.1002/apj.492
[21] M. Jalaal, D. D. Ganji, and G. Ahmadi, “Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media,” Advanced Powder Technology, vol. 21, no. 3, pp. 298-304, 2010. · doi:10.1016/j.apt.2009.12.010
[22] M. Jalaal and D. D. Ganji, “On unsteady rolling motion of spheres in inclined tubes filled with incompressible Newtonian fluids,” Advanced Powder Technology, vol. 22, pp. 58-67, 2011.
[23] S. M. Moghimi, D. D. Ganji, H. Bararnia, M. Hosseini, and M. Jalaal, “Homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2213-2216, 2011. · Zbl 1219.76038 · doi:10.1016/j.camwa.2010.09.018
[24] S. S. Motsa and S. Shateyi, “A new approach for the solution of three-dimensional magnetohydrodynamic rotating flow over a shrinking sheet,” Mathematical Problems in Engineering, vol. 2010, Article ID 586340, 15 pages, 2010. · Zbl 1202.76157 · doi:10.1155/2010/586340 · eudml:222560
[25] S. S. Motsa, P. Sibanda, and S. Shateyi, “A new spectral-homotopy analysis method for solving a nonlinear second order BVP,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2293-2302, 2010. · Zbl 1222.65090 · doi:10.1016/j.cnsns.2009.09.019
[26] S. S. Motsa, P. Sibanda, F. G. Awad, and S. Shateyi, “A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem,” Computers & Fluids, vol. 39, no. 7, pp. 1219-1225, 2010. · Zbl 1242.76363 · doi:10.1016/j.compfluid.2010.03.004
[27] Z. G. Makukula, P. Sibanda, and S. Motsa, “On a new solution for the viscoelastic squeezing flow between two parallel plates,” Journal of Advanced Research in Applied Mathematics, vol. 2, no. 4, pp. 31-38, 2010.
[28] Z. G. Makukula, P. Sibanda, and S. S. Motsa, “A note on the solution of the von Kármán equations using series and Chebyshev spectral methods,” Boundary Value Problems, vol. 2010, Article ID 471793, 17 pages, 2010. · Zbl 1207.35248 · doi:10.1155/2010/471793 · eudml:226896
[29] Zodwa G. Makukula, Precious Sibanda, and Sandile S. Motsa, “A novel numerical technique for two-dimensional laminar flow between two moving porous walls,” Mathematical Problems in Engineering, vol. 2010, Article ID 528956, 15 pages, 2010. · Zbl 1195.76387 · doi:10.1155/2010/528956 · eudml:225106
[30] Z. G. Makukula, P. Sibanda, and S. Motsa, “On a new quasi-linearisation method for heat transfer in a visco-elastic fluid between parallel plates,” in New Aspects of Fluid Mechanics, Heat Transfer and Environment, N. Mastorakis, V. Mladenov, and Z. Bojkovic, Eds., 8th iasme/wseas international conference on fluid mechanics & Aerodynamics (FMA ’10), pp. 178-186, Tapei, Taiwan, August 2010.
[31] Z. G. Makukula, P. Sibanda, and S. S. Motsa, “On new solutions for heat transfer in a visco-elastic fluid between parallel plates,” International Journal of Mathematical Models and Methods in Applied Sciences, vol. 4, no. 4, pp. 221-230, 2010.
[32] M. Sajid and T. Hayat, “The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet,” Chaos, Solitons and Fractals, vol. 39, no. 3, pp. 1317-1323, 2009. · Zbl 1197.76100 · doi:10.1016/j.chaos.2007.06.019
[33] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer, Berlin, Germany, 1988. · Zbl 0658.76001
[34] L. N. Trefethen, Spectral Methods in MATLAB, vol. 10, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2000. · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[35] H. S. Takhar, A. J. Chamkha, and G. Nath, “Natural convection on a thin vertical cylinder moving in a high-porosity ambient medium,” International Journal of Engineering Science, vol. 41, no. 16, pp. 1935-1950, 2003. · Zbl 1211.76121 · doi:10.1016/S0020-7225(03)00109-5