zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An optimal homotopy asymptotic approach applied to nonlinear MHD Jeffery-Hamel flow. (English) Zbl 1235.76110
Summary: A simple and effective procedure is employed to propose a new analytic approximate solution for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic Method (OHAM) does not depend upon any small/large parameters and provides us with a convenient way to control the convergence of the solution. The examples given in this paper lead to the conclusion that the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary function, which are determined using a computer technique.

76M25Other numerical methods (fluid mechanics)
76W05Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI
[1] G. B. Jeffery, “The two-dimensional steady motion of a viscous fluid,” Philosophical Magazine, vol. 6, no. 20, pp. 455-465, 1915. · Zbl 45.1088.01
[2] G. Hamel, “Spiralförmige bewegungen zäher flussigkeiten,” Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 25, pp. 34-60, 1916. · Zbl 46.1255.01
[3] M. Esmaeilpour and D. D. Ganji, “Solution of the Jeffery-Hamel flow problem by optimal homotopy asymptotic method,” Computers & Mathematics with Applications, vol. 59, no. 11, pp. 3405-3411, 2010. · Zbl 1197.76043 · doi:10.1016/j.camwa.2010.03.024
[4] A. A. Joneidi, G. Domairy, and M. Babaelahi, “Three analytical method applied to Jeffery-Hamel flow,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 11, pp. 3423-3434, 2010. · doi:10.1016/j.cnsns.2009.12.023
[5] S. M. Moghimi, D. D. Ganji, H. Bararnia, M. Hosseini, and M. Jalaal, “Homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2213-2216, 2011. · Zbl 1219.76038 · doi:10.1016/j.camwa.2010.09.018
[6] R. Sadri, Channel entrance flow, Ph.D. thesis, Department Mechanical Engineering, University of Western Ontario, 1997.
[7] I. J. Sobey and P. G. Drazin, “Bifurcations of two-dimensional channel flows,” Journal of Fluid Mechanics, vol. 171, pp. 263-287, 1986. · Zbl 0609.76050 · doi:10.1017/S0022112086001441
[8] W. I. Axford, “The magnetohydrodynamic Jeffrey-Hamel problem for a weakly conducting fluid,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 14, pp. 335-351, 1961. · Zbl 0106.40801 · doi:10.1093/qjmam/14.3.335
[9] G. Domairry and A. Aziz, “Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method,” Mathematical Problems in Engineering, vol. 2009, Article ID 603916, 19 pages, 2009. · Zbl 1245.76100 · doi:10.1155/2009/603916
[10] V. Marinca, N. Heri\csanu, and I. Neme\cs, “Optimal homotopy asymptotic method with application to thin film flow,” Central European Journal of Physics, vol. 6, pp. 648-653, 2008. · doi:10.2478/s11534-008-0061-x
[11] V. Marinca, N. Heri\csanu, C. Bota, and B. Marinca, “An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate,” Applied Mathematics Letters, vol. 22, no. 2, pp. 245-251, 2009. · Zbl 1163.76318 · doi:10.1016/j.aml.2008.03.019