zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Regularized methods for the split feasibility problem. (English) Zbl 1235.94028
Summary: Many applied problems such as image reconstructions and signal processing can be formulated as the split feasibility problem (SFP). Some algorithms have been introduced in the literature for solving the (SFP). In this paper, we will continue to consider the convergence analysis of the regularized methods for the (SFP). Two regularized methods are presented in the present paper. Under some different control conditions, we prove that the suggested algorithms strongly converge to the minimum norm solution of the (SFP).

94A08Image processing (compression, reconstruction, etc.)
Full Text: DOI
[1] H. Stark, Ed., Image Recovery: Theory and Application, Academic Press, Orlando, Fla, USA, 1987. · Zbl 1226.91049 · doi:10.1126/science.236.4808.1527
[2] P. L. Combettes, “The convex feasibility problem in image recovery,” in Advances in Imaging and Electron Physics, P. Hawkes, Ed., vol. 95, pp. 155-270, Academic Press, New York, NY, USA, 1996.
[3] H. H. Bauschke and J. M. Borwein, “On projection algorithms for solving convex feasibility problems,” SIAM Review, vol. 38, no. 3, pp. 367-426, 1996. · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[4] B. Eicke, “Iteration methods for convexly constrained ill-posed problems in Hilbert space,” Numerical Functional Analysis and Optimization, vol. 13, no. 5-6, pp. 413-429, 1992. · Zbl 0769.65026 · doi:10.1080/01630569208816489
[5] L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” American Journal of Mathematics, vol. 73, pp. 615-624, 1951. · Zbl 0043.10602 · doi:10.2307/2372313
[6] Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product space,” Numerical Algorithms, vol. 8, no. 2-4, pp. 221-239, 1994. · Zbl 0828.65065 · doi:10.1007/BF02142692
[7] C. Byrne, “Iterative oblique projection onto convex sets and the split feasibility problem,” Inverse Problems, vol. 18, no. 2, pp. 441-453, 2002. · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[8] C. Byrne, “A unified treatment of some iterative algorithms in signal processing and image reconstruction,” Inverse Problems, vol. 20, no. 1, pp. 103-120, 2004. · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[9] Q. Yang, “The relaxed CQ algorithm solving the split feasibility problem,” Inverse Problems, vol. 20, no. 4, pp. 1261-1266, 2004. · Zbl 1066.65047 · doi:10.1088/0266-5611/20/4/014
[10] B. Qu and N. Xiu, “A note on the CQ algorithm for the split feasibility problem,” Inverse Problems, vol. 21, no. 5, pp. 1655-1665, 2005. · Zbl 1080.65033 · doi:10.1088/0266-5611/21/5/009
[11] J. Zhao and Q. Yang, “Several solution methods for the split feasibility problem,” Inverse Problems, vol. 21, no. 5, pp. 1791-1799, 2005. · Zbl 1080.65035 · doi:10.1088/0266-5611/21/5/017
[12] H.-K. Xu, “A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem,” Inverse Problems, vol. 22, no. 6, pp. 2021-2034, 2006. · Zbl 1126.47057 · doi:10.1088/0266-5611/22/6/007
[13] Y. Dang and Y. Gao, “The strong convergence of a KM-CQ-like algorithm for a split feasibility problem,” Inverse Problems, vol. 27, no. 1, article 015007, p. 9, 2011. · Zbl 1211.65065 · doi:10.1088/0266-5611/27/1/015007
[14] F. Wang and H.-K. Xu, “Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem,” journal of Inequalities and Applications, Article ID 102085, 13 pages, 2010. · Zbl 1189.65107 · doi:10.1155/2010/102085 · eudml:231154
[15] Z. Wang, Q. I. Yang, and Y. Yang, “The relaxed inexact projection methods for the split feasibility problem,” Applied Mathematics and Computation, vol. 217, no. 12, pp. 5347-5359, 2011. · Zbl 1208.65088 · doi:10.1016/j.amc.2010.11.058
[16] Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, “A unified approach for inversion problems in intensity-modulated radiation therapy,” Physics in Medicine and Biology, vol. 51, no. 10, pp. 2353-2365, 2006. · doi:10.1088/0031-9155/51/10/001
[17] Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, “The multiple-sets split feasibility problem and its applications for inverse problems,” Inverse Problems, vol. 21, no. 6, pp. 2071-2084, 2005. · Zbl 1089.65046 · doi:10.1088/0266-5611/21/6/017
[18] J. Zhao and Q. Yang, “Several solution methods for the split feasibility problem,” Inverse Problems, vol. 21, no. 5, pp. 1791-1799, 2005. · Zbl 1080.65035 · doi:10.1088/0266-5611/21/5/017
[19] X. Yu, N. Shahzad, and Y. Yao, “Implicit and explicit algorithms for solving the split feasibility problem,” Optimization Letters. In press. · Zbl 1281.90087 · doi:10.1007/s11590-011-0340-0
[20] H.-K. Xu, “Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces,” Inverse Problems, vol. 26, no. 10, article 105018, p. 17, 2010. · Zbl 1213.65085 · doi:10.1088/0266-5611/26/10/105018
[21] Y. Yao, Y. C. Liou, and S. M. Kang, “Two-step projection methods for a system of variational inequality problems in Banach spaces,” Journal of Global Optimization. In press. · Zbl 1260.47085 · doi:10.1007/s10898-011-9804-0
[22] Y. Yao and N. Shahzad, “Strong convergence of a proximal point algorithm with general errors,” Optimization Letters. In press. · Zbl 1280.90097 · doi:110.1007/s11590-011-0286-2
[23] Y. Yao, M. Aslam Noor, and Y. C. Liou, “Strong convergence of a modified extra-gradient method to the minimum-norm solution of variational inequalities,” Abstract and Applied Analysis, vol. 2012, Article ID 817436, 9 pages, 2012. · Zbl 1232.49011 · doi:10.1155/2012/817436
[24] Y. Yao, R. Chen, and Y.-C. Liou, “A unified implicit algorithm for solving the triple-hierarchical constrained optimization problem,” Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 1506-1515, 2012. · Zbl 1275.47130 · doi:10.1016/j.mcm.2011.10.041
[25] Y. Yao, Y. J. Cho, and P. X. Yang, “An iterative algorithm for a hierarchical problem,” Journal of Applied Mathematics, vol. 2012, Article ID 320421, 13 pages, 2012. · Zbl 1235.65051 · doi:10.1155/2012/320421
[26] Y. Yao, Y. J. Cho, and Y.-C. Liou, “Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems,” European Journal of Operational Research, vol. 212, no. 2, pp. 242-250, 2011. · Zbl 1266.90186 · doi:10.1016/j.ejor.2011.01.042
[27] Y. Yao, R. Chen, and H.-K. Xu, “Schemes for finding minimum-norm solutions of variational inequalities,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 7-8, pp. 3447-3456, 2010. · Zbl 1183.49012 · doi:10.1016/j.na.2009.12.029
[28] M. A. Noor, K. I. Noor, and E. Al-Said, “Iterative methods for solving nonconvex equilibrium variational inequalities,” Applied Mathematics and Information Sciences, vol. 6, no. 1, pp. 65-69, 2012. · Zbl 1244.65084
[29] M. A. Noor, “Extended general variational inequalities,” Applied Mathematics Letters, vol. 22, no. 2, pp. 182-186, 2009. · Zbl 1163.49303 · doi:10.1016/j.aml.2008.03.007
[30] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28, Cambridge University Press, Cambridge, UK, 1990. · Zbl 0708.47031 · doi:10.1017/CBO9780511526152
[31] T. Suzuki, “Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces,” Fixed Point Theory and Applications, no. 1, pp. 103-123, 2005. · Zbl 1123.47308 · doi:10.1155/FPTA.2005.103 · eudml:53540
[32] H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society, vol. 66, no. 1, pp. 240-256, 2002. · Zbl 1013.47032 · doi:10.1112/S0024610702003332