Involutions and representations for reduced quantum algebras. (English) Zbl 1236.53070

Summary: In the context of deformation quantization, there exist various procedures to deal with the quantization of a reduced space \(M_{\text{red}}\). We shall be concerned here mainly with the classical Marsden-Weinstein reduction, assuming that we have a proper action of a Lie group \(G\) on a Poisson manifold \(M\), with a moment map \(J\) for which zero is a regular value. For the quantization, we follow M. Bordemann, H.-C. Herbig and S. Waldmann [Commun. Math. Phys. 210, No. 1, 107–144 (2000; Zbl 0961.53046)] (with a simplified approach) and build a star product \(*_{\text{red}}\) on \(M_{\text{red}}\) from a strongly invariant star product \(*\) on \(M\). The new questions which are addressed in this paper concern the existence of natural \(*\)-involutions on the reduced quantum algebra and the representation theory for such a reduced \(*\)-algebra.
We assume that \(*\) is Hermitian and we show that the choice of a formal series of smooth densities on the embedded coisotropic submanifold \(C=J^{-1}(0)\), with some equivariance property, defines a \(*\)-involution for \(*_{\text{red}}\) on the reduced space. Looking into the question whether the corresponding \(*\)-involution is the complex conjugation (which is a \(*\)-involution in the Marsden-Weinstein context) yields a new notion of quantized unimodular class.
We introduce a left \(({\mathcal C}^\infty(M)[[\lambda]],*)\)-submodule and a right \(({\mathcal C}^\infty (M_{\text{red}})\)-submodule \({\mathcal C}^\infty_{\text{cf}}(C) [[\lambda]]\) of \(C^\infty(C)[[\lambda]]\); we define on it a \({\mathcal C}^\infty(M_{\text{red}})[[\lambda]]\)-valued inner product and we establish that this gives a strong Morita equivalence bimodule between \({\mathcal C}^\infty(M_{\text{red}})[[\lambda]]\) and the finite rank operators on \({\mathcal C}^\infty_{\text{cf}}(C)[[\lambda]]\). The crucial point is here to show the complete positivity of the inner product. We obtain a Rieffel induction functor from the strongly non-degenerate \(*\)-representations of \(({\mathcal C}^\infty(M_{\text{red}})[[\lambda]], *_{\text{red}})\) on pre-Hilbert right \({\mathcal D}\)-modules to those of \(({\mathcal C}^\infty(M)[[\lambda]],*)\), for any auxiliary coefficient \(*\)-algebra \({\mathcal D}\) over \(\mathbb{C}[[\lambda]]\).


53D55 Deformation quantization, star products
53D20 Momentum maps; symplectic reduction
16D90 Module categories in associative algebras
81S10 Geometry and quantization, symplectic methods
53D17 Poisson manifolds; Poisson groupoids and algebroids


Zbl 0961.53046
Full Text: DOI arXiv Link


[1] Ara, P., Morita equivalence for rings with involution, Algebr. Represent. Theory, 2, 227-247 (1999) · Zbl 0944.16005
[2] Arnal, D.; Cortet, J. C.; Molin, P.; Pinczon, G., Covariance and geometrical invariance in ∗-quantization, J. Math. Phys., 24, 2, 276-283 (1983) · Zbl 0515.22015
[3] Basart, H.; Lichnerowicz, A., Conformal symplectic geometry, deformations, rigidity and geometrical (KMS) conditions, Lett. Math. Phys., 10, 167-177 (1985) · Zbl 0589.53037
[4] Bayen, F.; Flato, M.; Frønsdal, C.; Lichnerowicz, A.; Sternheimer, D., Deformation theory and quantization, Ann. Phys., 111, 61-151 (1978) · Zbl 0377.53025
[5] Bordemann, M., (Bi)modules, morphisms, and reduction of star-products: the symplectic case, foliations, and obstructions, Trav. Math., 16, 9-40 (2005) · Zbl 1099.53061
[6] Bordemann, M.; Herbig, H.-C.; Waldmann, S., BRST cohomology and phase space reduction in deformation quantization, Comm. Math. Phys., 210, 107-144 (2000) · Zbl 0961.53046
[7] Bordemann, M.; Neumaier, N.; Waldmann, S., Homogeneous Fedosov star products on cotangent bundles I: Weyl and standard ordering with differential operator representation, Comm. Math. Phys., 198, 363-396 (1998) · Zbl 0968.53056
[8] Bordemann, M.; Neumaier, N.; Waldmann, S.; Weiß, S., Deformation quantization of surjective submersions and principal fibre bundles (2007), 32 pages
[9] Bursztyn, H.; Waldmann, S., Algebraic Rieffel induction, formal Morita equivalence and applications to deformation quantization, J. Geom. Phys., 37, 307-364 (2001) · Zbl 1039.46052
[10] Bursztyn, H.; Waldmann, S., The characteristic classes of Morita equivalent star products on symplectic manifolds, Comm. Math. Phys., 228, 103-121 (2002) · Zbl 1036.53068
[11] Bursztyn, H.; Waldmann, S., Completely positive inner products and strong Morita equivalence, Pacific J. Math., 222, 201-236 (2005) · Zbl 1111.53071
[12] Cattaneo, A. S.; Felder, G., Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model, Lett. Math. Phys., 69, 157-175 (2004) · Zbl 1065.53063
[13] Cattaneo, A. S.; Felder, G., Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math., 208, 521-548 (2007) · Zbl 1106.53060
[14] Dirac, P. A.M., Lectures on Quantum Mechanics (1964), Belfer Graduate School of Science, Yeshiva University: Belfer Graduate School of Science, Yeshiva University New York · Zbl 0141.44603
[15] Dito, G.; Sternheimer, D., Deformation quantization: genesis, developments and metamorphoses, (Halbout, G., Deformation Quantization, vol. 1. Deformation Quantization, vol. 1, IRMA Lect. Math. Theor. Phys. (2002), Walter de Gruyter: Walter de Gruyter Berlin, New York), 9-54 · Zbl 1014.53054
[16] Dolgushev, V. A., Covariant and equivariant formality theorems, Adv. Math., 191, 147-177 (2005) · Zbl 1116.53065
[17] Fedosov, B. V., Deformation Quantization and Index Theory (1996), Akademie Verlag: Akademie Verlag Berlin · Zbl 0867.58061
[18] Gutt, S., An explicit ∗-product on the cotangent bundle of a Lie group, Lett. Math. Phys., 7, 249-258 (1983) · Zbl 0522.58019
[19] Gutt, S.; Rawnsley, J., Traces for star products on symplectic manifolds, J. Geom. Phys., 42, 12-18 (2002) · Zbl 1075.53097
[20] Karabegov, A. V., On the canonical normalization of a trace density of deformation quantization, Lett. Math. Phys., 45, 217-228 (1998) · Zbl 0943.53052
[21] Landsman, N. P., Mathematical Topics between Classical and Quantum Mechanics, Springer Monogr. Math. (1998), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0923.00008
[22] Lu, J.-H., Moment maps at the quantum level, Comm. Math. Phys., 157, 389-404 (1993) · Zbl 0801.17019
[23] Nest, R.; Tsygan, B., Algebraic index theorem, Comm. Math. Phys., 172, 223-262 (1995) · Zbl 0887.58050
[24] Neumaier, N., Local \(ν\)-Euler derivations and Deligne’s characteristic class of Fedosov star products and star products of special type, Comm. Math. Phys., 230, 271-288 (2002) · Zbl 1035.53124
[25] Rieffel, M. A., Morita equivalence for \(C^\ast \)-algebras and \(W^\ast \)-algebras, J. Pure Appl. Math., 5, 51-96 (1974) · Zbl 0295.46099
[26] Schmüdgen, K., Unbounded Operator Algebras and Representation Theory, Oper. Theory Adv. Appl., vol. 37 (1990), Birkhäuser Verlag: Birkhäuser Verlag Basel, Boston, Berlin
[27] Waldmann, S., Poisson-Geometrie und Deformationsquantisierung. Eine Einführung (2007), Springer-Verlag: Springer-Verlag Heidelberg, Berlin, New York · Zbl 1139.53001
[28] Weinstein, A., The modular automorphism group of a Poisson manifold, J. Geom. Phys., 23, 379-394 (1997) · Zbl 0902.58013
[29] Willwacher, T., A counterexample to the quantizability of modules, Lett. Math. Phys., 81, 3, 265-280 (2007) · Zbl 1138.53069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.