Karapınar, Erdal; Chi, Kieu Phuong; Thanh, Tran Duc A generalization of Ćirić quasicontractions. (English) Zbl 1236.54040 Abstr. Appl. Anal. 2012, Article ID 518734, 9 p. (2012). Summary: We prove a fixed point theorem for a class of maps that satisfy Ćirić’s contractive condition depending on another function. We present an example to show that our result is a real generalization. Cited in 1 ReviewCited in 14 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 47H10 Fixed-point theorems × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] K. C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, New York, NY, USA, 1985. · Zbl 0558.47038 · doi:10.1017/CBO9780511625756 [2] E. A. Ok, Real Analysis with Economic Applications, Princeton University Press, Princeton, NJ, USA, 2007. · Zbl 1119.26001 [3] J. W. de Bakker and J. I. Zucker, “Processes and the denotational semantics of concurrency,” Information and Control, vol. 54, no. 1-2, pp. 70-120, 1982. · Zbl 0508.68011 · doi:10.1016/S0019-9958(82)91250-5 [4] R. Heckmann, “Approximation of metric spaces by partial metric spaces,” Applied Categorical Structures, vol. 7, no. 1-2, pp. 71-83, 1999. · Zbl 0993.54029 · doi:10.1023/A:1008684018933 [5] S. G. Matthews, “Partial metric topology,” Research Report 212, Department of Computer Science, University of Warwick, 1992. · Zbl 0911.54025 [6] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations itegrales,” Fundamenta Mathematicae, vol. 3, pp. 133-181, 1922. · JFM 48.0201.01 [7] R. Kannan, “Some results on fixed points,” Bulletin of the Calcutta Mathematical Society, vol. 60, pp. 71-76, 1968. · Zbl 0209.27104 [8] S. Reich, “Kannan’s fixed point theorem,” Bollettino della Unione Matematica Italiana IV, vol. 4, no. 4, pp. 1-11, 1971. · Zbl 0219.54042 [9] S. Reich, “Some remarks concerning contraction mappings,” Canadian Mathematical Bulletin, vol. 14, pp. 121-124, 1971. · Zbl 0211.26002 · doi:10.4153/CMB-1971-024-9 [10] S. Reich, “Fixed points of contractive functions,” Bollettino della Unione Matematica Italiana IV, vol. 5, pp. 26-42, 1972. · Zbl 0249.54026 [11] S. K. Chatterjea, “Fixed-point theorems,” Comptes Rendus de l’Académie Bulgare des Sciences, vol. 25, pp. 727-730, 1972. · Zbl 0274.54033 [12] G. E. Hardy and T. D. Rogers, “A generalization of a fixed point theorem of Reich,” Canadian Mathematical Bulletin, vol. 16, pp. 201-206, 1973. · Zbl 0266.54015 · doi:10.4153/CMB-1973-036-0 [13] L. B. Ćirić, “Generalized contraction and fixed point theorems,” Publications de l’Institut Mathématique, vol. 12, no. 26, pp. 19-26, 1971. · Zbl 0234.54029 [14] L. B. Ćirić, “A generalization of Banach’s contraction principle,” Proceedings of the American Mathematical Society, vol. 45, pp. 267-273, 1974. · Zbl 0291.54056 · doi:10.2307/2040075 [15] L. Ćirić, “On contraction type mappings,” Mathematica Balkanica, vol. 1, pp. 52-57, 1971. · Zbl 0223.54018 [16] M. Edelstein, “On fixed and periodic points under contractive mappings,” Journal of the London Mathematical Society II, vol. 37, pp. 74-79, 1962. · Zbl 0113.16503 · doi:10.1112/jlms/s1-37.1.74 [17] E. Karapınar, “Fixed point theory for cyclic weak \varphi -contraction,” Applied Mathematics Letters. An International Journal of Rapid Publication, vol. 24, no. 6, pp. 822-825, 2011. · Zbl 1256.54073 · doi:10.1016/j.aml.2010.12.016 [18] E. Karapınar, “Fixed point theorems in cone Banach spaces,” Fixed Point Theory and Applications, vol. 2009, Article ID 609281, 9 pages, 2009. · Zbl 1204.47066 · doi:10.1155/2009/609281 [19] B. E. Rhoades, “A comparison of various definitions of contractive mappings,” Transactions of the American Mathematical Society, vol. 226, pp. 257-290, 1977. · Zbl 0365.54023 · doi:10.2307/1997954 [20] K. P. Chi and H. T. Thuy, “A fixed point theorem in 2-metric spaces for a class of maps that satisfy a contractive condition dependent on an another function,” Lobachevskii Journal of Mathematics, vol. 31, no. 4, pp. 338-346, 2010. · Zbl 1254.54057 · doi:10.1134/S1995080210040050 [21] S. Moradi and M. Omid, “A fixed-point theorem for integral type inequality depending on another function,” International Journal of Mathematical Analysis, vol. 4, no. 29-32, pp. 1491-1499, 2010. · Zbl 1216.54015 [22] K. P. Chi, “On a fixed point theorem for certain class of maps satisfying a contractive condition depended on an another function,” Lobachevskii Journal of Mathematics, vol. 30, no. 4, pp. 289-291, 2009. · Zbl 1227.54045 · doi:10.1134/S1995080209040076 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.