Characterization of multivariate heavy-tailed distribution families via copula. (English) Zbl 1236.62048

Summary: The multivariate regular variation (MRV) is one of the most important tools in modeling multivariate heavy-tailed phenomena. This paper characterizes the MRV distributions through the tail dependence function of the copula associated with them. Along with some existing results, our studies indicate that the existence of the lower tail dependence function of the survival copula is necessary and sufficient for a random vector with regularly varying univariate marginals to have a MRV tail. Moreover, the limit measure of the MRV tail is explicitly characterized. Our analysis is also extended to some more general multivariate heavy-tailed distributions, including the subexponential and the long-tailed distribution families.


62H05 Characterization and structure theory for multivariate probability distributions; copulas
62G32 Statistics of extreme values; tail inference
Full Text: DOI


[1] Bingham, N.; Goldie, C.; Teugels, J., Regular Variation (1987), Cambridge University Press: Cambridge University Press New York · Zbl 0617.26001
[2] Charpentier, A.; Segers, J., Tails of multivariate Archimedean copulas, Journal of Multivariate Analysis, 100, 1521-1537 (2009) · Zbl 1165.62038
[3] Cline, D. B.H.; Resnick, S. I., Multivariate subexponential distributions, Stochastic Process and their Applications, 42, 49-72 (1992) · Zbl 0751.62025
[4] Cline, D. B.H.; Samorodnitsky, G., Subexponentiality of the product of independent random variables, Stochastic Processes and their Applications, 49, 75-98 (1994) · Zbl 0799.60015
[5] de Haan, L.; Ferreira, A., Extreme Value Theory: An Introduction (2006), Springer: Springer New York · Zbl 1101.62002
[6] de Haan, L.; Resnick, S. I., Limit theory for multivariate sample extremes, Wahrscheinlichkeitstheorie und verwandte Gebiete, 40, 317-337 (1977) · Zbl 0375.60031
[7] Embrechts, P.; Lindskog, F.; McNeil, A., Modelling dependence with copulas and applications to risk management, (Rachev, S., Handbook of Heavy Tailed Distributions in Finance (2003), Elsevier: Elsevier New York), 329-384
[8] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling Extremal Events for Insurance and Finance (1997), Springer: Springer Berlin · Zbl 0873.62116
[9] Finkenstädt, B.; Rootzén, H., Extreme Values in Finance, Telecommunications, and the Environment (2003), Chapman & Hall/CRC: Chapman & Hall/CRC London
[10] Joe, H., Multivariate Models and Dependence Concepts (1997), Chapman & HAll/CRC: Chapman & HAll/CRC London · Zbl 0990.62517
[11] Kortschak, D.; Albrecher, H., Asymptotic results for the sum of dependent non-identically distributed random variables, Methodology and Computing in Applied Probability, 11, 279-306 (2009) · Zbl 1171.60348
[12] Larsson, M.; Nešlehová, J., Extremal behavior of Archimedean copulas, Advances in Applied Probability, 43, 195-216 (2011) · Zbl 1213.62084
[13] Li, H.; Sun, Y., Tail dependence for heavy-tailed scale mixtures of multivariate distributions, Journal of Applied Probability, 46, 925-937 (2009) · Zbl 1179.62076
[14] Maulik, K.; Resnick, S. I.; Rootzén, H., Asymptotic independence and a network traffic model, Journal of Applied Probability, 39, 671-699 (2002) · Zbl 1090.90017
[15] McNeil, A. J.; Nešlehová, J., Multivariate Archimedean copulas, \(d\)-monotone functions and \(l_1\)-norm symmetric distributions, Annals of Statistics, 37, 3059-3097 (2009) · Zbl 1173.62044
[16] Nelsen, R. B., An Introduction to Copulas (2006), Springer: Springer New York · Zbl 1152.62030
[17] Rachev, S. T., Handbook of Heavy Tailed Distributions in Finance (2003), Elsevier: Elsevier Amsterdam
[18] Resnick, S. I., Extreme Values, Regular Variation and Point Processes (1987), Springer: Springer New York · Zbl 0633.60001
[19] Resnick, S. I., Heavy-tail Phenomena: Probabilistic and Statistical Modeling (2007), Springer: Springer New York · Zbl 1152.62029
[20] Y. Sun, H. Li, Tail approximation of Value-at-Risk under multivariate regular variation, Unpublished results, 2010, Accessible on Nov 2nd, 2011 through the link http://www.math.wsu.edu/math/faculty/lih/VaR-Sun_Li-Nov10.pdf; Y. Sun, H. Li, Tail approximation of Value-at-Risk under multivariate regular variation, Unpublished results, 2010, Accessible on Nov 2nd, 2011 through the link http://www.math.wsu.edu/math/faculty/lih/VaR-Sun_Li-Nov10.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.