Kafadar, Karen Special section on statistics in neuroscience. (English) Zbl 1236.62153 Ann. Appl. Stat. 5, No. 2B, 1127-1131 (2011). Summary: This article provides a brief introduction to seven papers that are included in this special section on statistics in neuroscience: (1) X. Shi, J.G. Ibrahim, J. Lieberman, M. Styner, Y. Li and H. Zhu: Two-state empirical likelihood for longitudinal neuroimaging data. (2) V.Q. Vu, P. Ravikumar, T. Naselaris, K.N. Kay, J.L. Gallant and B. Yu: Encoding and decoding V1 fMRI responses to natural images with sparse nonparametric models. (3) S. Bhattacharya and R. Maitra: A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments. (4) C.J. Long, P.L. Purdon, S. Temereanca, N.U. Desai, M.S. Hämäläinen and E.N. Brown: State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing. (5) Y. Mishchenko, J.T. Vogelstein and L. Paninski: A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. (6) R.E. Kass, R.C. Kelly and W.-L. Loh: Assessment of synchrony in multiple neural spike trains using loglinear point process models. (7) S. Olhede and B. Whitcher: Nonparametric tests of structure for high angular resolution diffusion imaging in Q-space. MSC: 62P10 Applications of statistics to biology and medical sciences; meta analysis 92C20 Neural biology 92C55 Biomedical imaging and signal processing Keywords:functional magnetic resonance imaging; fMRI; brain imaging; exploratory analysis; nonparametric fitting; model selection; signal detection × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Brillinger, D. R. (1988). Some statistical methods for random process data from seismology and neurophysiology. Ann. Statist. 16 1-54. · Zbl 0637.62089 · doi:10.1214/aos/1176350689 [2] Brillinger, D. R. (1992). Nerve cell spike train data analysis: A progression of technique. J. Amer. Statist. Assoc. 87 260-271. [3] Eddy, W. F., Fitzgerald, M. and Noll, D. C. (1996). Improved image registration by using Fourier interpolation. Magnetic Resonance in Medicine 36 923-931. [4] Eddy, W. F., Fitzgerald, M., Genovese, C. and Mockus, A. (1995). The challenge of functional magnetic resonance imagining. In Massive Data Sets: Proceedings of a Workshop 39-45. National Academies Press, Washington, DC. [5] Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. B., Frith, C. and Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 4 189-210. [6] Kilner, J. M. and Friston, K. J. (2010). Topological inference for EEG and MEG. Ann. Appl. Statist. 4 1272-1290. · Zbl 1202.62154 · doi:10.1214/10-AOAS337 [7] Li, M. and Loh, W.-L. (2011). Estimating the number of neurons in multi-neuronal spike trains. Ann. Appl. Statist. 5 176-200. · Zbl 1220.62140 · doi:10.1214/10-AOAS371 [8] Ogawa, S., Tank, D. W., Menon, D. W., Ellermann, J. M., Kim, S., Merkle, H. and Ugurbil, K. (1992). Intrinisic signal changes accompanyig sensory stimulation: Functional brain mapping using MRI. Proc. Natl. Acad. Sci. 89 5951-5955. [9] Taylor, J. E. and Worsley, K. J. (2007). Detecting sparse signals in random fields, with an application to brain mapping. J. Amer. Statist. Assoc. 102 913-928. · Zbl 1469.62353 · doi:10.1198/016214507000000815 [10] Worsley, K. J. and Friston, K. J. (1995). Analysis of fMRI time-series revisited-again. Neuroimage 2 173-181. [11] Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C. and Friston, K. J. (1996). A unified statistical approach for determining significant voxels in images of cerebral activation. Human Brain Mapping 4 189-210. · Zbl 1022.92021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.