×

Approximate periodic solutions for the Helmholtz-Duffing equation. (English) Zbl 1236.65103

Summary: Approximate periodic solutions for the Helmholtz-Duffing oscillator are obtained in this paper. He’s Energy Balance Method (HEBM) and He’s Frequency Amplitude Formulation (HFAF) are adopted as the solution methods. Oscillation natural frequencies are analytically analyzed. Error analysis is carried out and accuracy of the solution methods is evaluated.

MSC:

65L99 Numerical methods for ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Thylwe, K. E., Exact quenching phenomenon of undamped driven Helmholtz and Duffing oscillators, Journal of Sound and Vibrations, 161, 2, 203-211 (1993) · Zbl 0925.70255
[2] Cveticanin, L., Vibrations of the nonlinear oscillator with quadratic non-linearity, Physica A, 341, 123-135 (2004)
[3] Cao, H.; Seoane, J. M.; Sanjuan, M. A.F., Symmetry-breaking analysis for the general Helmholtz-Duffing oscillator, Chaos, Solitons & Fractals, 34, 197-212 (2007) · Zbl 1169.70309
[4] Leung, A. Y.T.; Guo, Z. J., Homotopy perturbation for conservative Helmholtz-Duffing oscillators, Journal of Sound and Vibrations, 325, 287-296 (2009)
[5] Leung, A. Y.T.; Guo, Z. J., The iterative homotopy harmonic balance method for conservative Helmholtz-Duffing oscillators, Applied Mathematics and Computation, 215, 3163-3169 (2010) · Zbl 1183.65083
[6] He, J. H., Variational approach for nonlinear oscillators, Chaos, Solitons & Fractals, 34, 1430-1439 (2007) · Zbl 1152.34327
[7] Zhang, H. L., Periodic solutions for some strongly nonlinear oscillations by He’s energy balance method, Computers & Mathematics with Applications, 58, 2480-2485 (2009) · Zbl 1189.65182
[8] He, J. H., Preliminary report on the energy balance for nonlinear oscillations, Mechanics Research Communications, 29, 107-111 (2002) · Zbl 1048.70011
[9] Öziş, T.; Yıldırım, A., Determination of frequency-amplitude relation for Duffing-harmonic oscillator by the energy balance method, Computers & Mathematics with Applications, 54, 1184-1187 (2007) · Zbl 1147.34321
[10] Ganji, S. S.; Ganji, D. D.; Ganji, Z. Z.; Karimpour, S., Periodic solution for strongly nonlinear vibration systems by He’s energy balance method, Acta Applicandae Mathematicae, 106, 79-92 (2009) · Zbl 1241.34049
[11] Younesian, D.; Askari, H.; Saadatnia, Z.; KalamiYazdi, M., Analytical approximate solutions for the generalized nonlinear oscillator, Applicable Analysis (2011) · Zbl 1425.70035
[12] He, J. H., Comment on ‘He’s frequency formulation for nonlinear oscillators’, European Journal of Physics, 29, L19-L22 (2008)
[13] Fan, J., He’s frequency-amplitude formulation for the Duffing harmonic oscillator, Computers & Mathematics with Applications, 58, 2473-2476 (2009) · Zbl 1189.65163
[14] Zhao, L., He’s frequency-amplitude formulation for nonlinear oscillators with an irrational force, Computers & Mathematics with Applications, 58, 2477-2479 (2009) · Zbl 1189.65185
[15] Younesian, D.; Askari, H.; Saadatnia, Z.; Kalami Yazdi, M., Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency-amplitude formulation and He’s energy balance method, Computers & Mathematics with Applications, 59, 3222-3228 (2010) · Zbl 1193.65152
[16] Geng, L.; Cai, X. C., He’s frequency formulation for nonlinear oscillators, European Journal of Physics, 28, 923-931 (2007) · Zbl 1162.70019
[17] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1995), Wiley: Wiley New York · Zbl 0919.73156
[18] Ren, Zh. F.; He, J. H., A simple approach to nonlinear oscillators, Physics Letters A, 373, 3749-3752 (2009) · Zbl 1233.70009
[19] Beléndez, A.; Gimeno, E.; Álvarez, M. L.; Méndez, D. I.; Hernández, A., Application of a modified rational harmonic balance method for a class of strongly nonlinear oscillators, Physics Letters A, 372, 6047-6052 (2008) · Zbl 1223.34055
[20] Darvishi, M. T.; Karami, A.; Shin, Byeong-Chun, Application of He’s parameter-expansion method for oscillators with smooth odd nonlinearities, Physics Letters A, 372, 5381-5384 (2008) · Zbl 1223.70065
[21] Beléndez, A.; Pascual, C.; Gallego, S.; Ortuño, M.; Neipp, C., Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of an \(x 1 / 3\) force nonlinear oscillator, Physics Letters A, 371, 421-426 (2007) · Zbl 1209.65083
[22] Beléndez, A.; Méndez, D. I.; Fernández, E.; Marini, S.; Pascual, I., An explicit approximate solution to the Duffing harmonic oscillator by a cubication method, Physics Letters A, 373, 2805-2809 (2009) · Zbl 1233.70008
[23] Hu, H., Solution of a quadratic nonlinear oscillator by the method of harmonic balance, Journal of Sound and Vibrations, 293, 462-468 (2006) · Zbl 1243.34048
[24] Hu, H., Solution of a mixed parity nonlinear oscillator: harmonic balance, Journal of Sound and Vibrations, 299, 331-338 (2002)
[25] Mickens, R. E., Quadratic non-linear oscillators, Journal of Sound and Vibrations, 270, 427-432 (2004) · Zbl 1236.70036
[26] Yıldırım, A.; Öziş, T., Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method, Physics Letters A, 369, 70-76 (2007) · Zbl 1209.65120
[27] Cveticanin, L., Oscillator with fraction order restoring force, Journal of Sound and Vibrations, 320, 1064-1077 (2009)
[28] Cveticanin, L., Pure odd-order oscillators with constant excitation, Journal of Sound and Vibrations, 330, 976-986 (2010)
[29] Cveticanin, L.; Kovacic, I.; Rakaric, Z., Asymptotic methods for vibrations of the pure non-integer order oscillator, Computers & Mathematics with Applications, 60, 2616-2628 (2010) · Zbl 1205.34037
[30] Kovacic, I.; Rakaric, Z.; Cveticanin, L., A non-simultaneous variational approach for the oscillators with fractional-order power nonlinearities, Applied Mathematics and Computation, 217, 3944-3954 (2010) · Zbl 1384.34041
[31] Kalami Yazdi, M.; Khan, Y.; Madani, M.; Askari, H.; Saadatnia, Z.; Yıldırım, A., Analytical solutions for autonomous conservative nonlinear oscillator, International Journal of Nonlinear Sciences and Numerical Simulation, 11, 11, 975-980 (2010)
[32] Askari, H.; Kalami Yazdi, M.; Saadatnia, Z., Frequency analysis of nonlinear oscillators with rational restoring force via He’s energy balance method and He’s variational approach, Nonlinear Science Letters A, 1, 425-430 (2010)
[33] Öziş, T.; Yıldırım, A., A study of nonlinear oscillators with \(x 1 / 3\) force by He’s variational iteration method, Journal of Sound and Vibrations, 306, 372-376 (2007) · Zbl 1242.74214
[34] Öziş, T.; Yıldırım, A., Determination of periodic solution for a \(u 1 / 3\) force by He’s modified Lindstedt-Poincare method, Journal of Sound and Vibrations, 301, 415-419 (2007) · Zbl 1242.70044
[35] Yıldırım, A.; Askari, H.; Saadatnia, Z.; KalamiYazdi, M.; Khan, Y., Analysis of nonlinear oscillations of a punctual charge in the electric field of a charged ring via a Hamiltonian approach and the energy balance method, Computers & Mathematics with Applications, 62, 486-490 (2011) · Zbl 1228.78003
[36] Cveticanin, L.; KalamiYazdi, M.; Saadatnia, Z.; Askari, H., Application of Hamiltonian approach to the generalized nonlinear oscillator with fractional power, International Journal of Nonlinear Sciences and Numerical Simulation, 12, 997-1002 (2010)
[37] Younesian, D.; Askari, H.; Saadatnia, Z.; Yıldırım, A., Periodic solutions for the generalized nonlinear oscillators containing fraction order elastic force, International Journal of Nonlinear Sciences and Numerical Simulation, 11, 1027-1032 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.