zbMATH — the first resource for mathematics

A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems. (English) Zbl 1236.65142
Summary: This paper deals with a posteriori error estimators for the non conforming Crouzeix-Raviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms.

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI
[1] Bermúdez, A.; Rodríguez, R.; Santamarina, D., A finite element solution of an added mass formulation for coupled fluid – solid vibrations, Numer. math., 87, 201-227, (2000) · Zbl 0998.76046
[2] Conca, C.; Planchard, J.; Vanninathan, M., ()
[3] Canavati, J.; Minsoni, A., A discontinuous Steklov problem with an application to water waves, J. math. anal. appl., 69, 540-558, (1979) · Zbl 0418.35072
[4] Alonso, A.; Dello Russo, A., Spectral approximation of variationally posed eigenvalue problems by non conforming methods, J. comput. appl. math., 223, 177-197, (2009) · Zbl 1156.65094
[5] Dari, E.; Durán, R.; Padra, C.; Vampa, V., A posteriori error estimators for noconforming finite element methods, RAIRO model. math. anal. numer., 30, 385-400, (1996) · Zbl 0853.65110
[6] Carstensen, C.; Bartels, S.; Jansche, S., A posteriori error estimates for nonconforming finite element methods, Numer. math., 92, 233-256, (2002) · Zbl 1010.65044
[7] Hoppe, R.H.W.; Wohlmuth, B., Element-oriented and edge-oriented local error estimators for nonconforming finite element methods, RAIRO model. math. anal. numer., 30, 237-263, (1996) · Zbl 0843.65075
[8] Schieweck, P., A posteriori error estimates with post-processing for non conforming finite elements, M2AN math. model. numer. anal., 32, 489-503, (2002) · Zbl 1041.65083
[9] R. Durán, C. Padra, An error estimator for nonconforming approximations of a nonlinear problem, in: M. Kuríusek, P. Neittaanmäki, R. Stenberg (Eds.), Finite Element Method: Fifty Years of the Courant Element, Jyvaskyla, Finland, 1993, pp. 201-205. · Zbl 0822.65086
[10] Ainsworth, M., Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. numer. anal., 42, 2320-2341, (2005) · Zbl 1085.65102
[11] Ainsworth, M.; Rankin, R., Robust a posteriori error estimation for nonconforming forti – soulie finite element approximation, Math. comp., 77, 1917-1939, (2008) · Zbl 1198.65215
[12] Carstensen, C., A unifyng theory of a posteriori finite element error control, Numer. math., 100, 617-637, (2005) · Zbl 1100.65089
[13] Carstensen, C.; Hu, J., A unifyng theory of a posteriori error control for nonconforming finite element methods, Numer. math., 107, 473-502, (2007) · Zbl 1127.65083
[14] Carstensen, C.; Hu, J.; Orlando, A., Framework for the a posteriori error analysis of nonconforming finite elements, SIAM J. numer. anal., 45, 68-82, (2007) · Zbl 1165.65072
[15] Carstensen, C.; Hoppe, R.H.W., Convergence analysis of an adaptive nonconforming finite element method, Numer. math., 103, 251-266, (2006) · Zbl 1101.65102
[16] Alonso, A.; Dello Russo, A.; Vampa, V., A posteriori error estimates in finite element solution of structure vibration problems with applications to acoustic fluid – structure analysis, Comput. mech., 23, 231-239, (1999) · Zbl 0959.74062
[17] Durán, R.; Padra, C.; Rodríguez, R., A posteriori error estimates for the finite element approximations of eigenvalue problems, Math. models methods appl. sci., 13, 1219-1229, (2003) · Zbl 1072.65144
[18] Armentano, G.; Padra, C., A posteriori error estimates for the Steklov eigenvalue problem, Appl. numer. math., 58, 593-601, (2008) · Zbl 1140.65078
[19] Babuˇska, I.; Miller, A., A feedback finite element methods with a posteriori error estimation. part 1: the finite element method and some basic properties of the a posteriori error estimator, Comput. methods appl. mech. eng., 61, 1-40, (1987) · Zbl 0593.65064
[20] Carstensen, C.; Verfürth, R., Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. numer. anal., 36, 1571-1587, (1999) · Zbl 0938.65124
[21] Weinberger, H.F., Variational methods for eigenvalue approximation, (1974), SIAM Philadelphia · Zbl 0296.49033
[22] Dauge, M., ()
[23] Grisvard, P., Elliptic problems for non-smooth domains, (1985), Pitman · Zbl 0695.35060
[24] P. Schieweck, A general transfer operatorfor arbitrary finite element spaces, Preprint 25/00 Otto-Von-Guericke Universität Magdeburg, Fakultät fur Mathematik, 2000.
[25] Karakashian, O.A.; Pascal, F., A posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems, SIAM J. numer. anal., 41, 2374-2399, (2003) · Zbl 1058.65120
[26] Clement, P., Approximation by finite element functions using local regularization, RAIRO anal. numer., 9, 77-84, (1975) · Zbl 0368.65008
[27] Scott, L.R.; Zhang, S., Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. comp., 54, 483-493, (1990) · Zbl 0696.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.