Yang, Yidu; Bi, Hai Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. (English) Zbl 1236.65143 SIAM J. Numer. Anal. 49, No. 4, 1602-1624 (2011). The authors consider the symmetric elliptic variational eigenvalue problem \[ a(u,v)=\lambda b(u,v) \text{ for } v \in V, \] where \[ a(u,v):= \int_\Omega \Bigg( \sum_{i,j=1}^d a_{i,j} \partial_i u \partial_j v +cuv \Bigg), \quad b(u,v):= \int_\Omega \beta uv \] and \(V:=H_0^1(\Omega)\) or \(V:=H^1(\Omega)\). The problem is discretized using conforming and nonconforming finite elements.The two-grid discretization scheme is given by \[ \begin{aligned} \text{Step 1.} \qquad &a_H(u,v)=\lambda_{k,H} b(u_{k,H},v) \text{ for } v \in V_H, \\ \text{Step 2.} \qquad &a_h(u,v)=\lambda_{k,H} b(u_{k,H},v) \text{ for } v \in V_h, \end{aligned} \] where the indices \(H\) and \(h\) refer to a coarse grid \(\pi_H\) and a fine grid \(\pi_h\), respectively, and the bilinear form \(a_h\) denotes the elementwise evaluated bilinear form \(a\).Based on results from the abstract discretization theory of eigenvalue problems the authors prove error estimates corresponding to the approximation properties of the trial space. Numerical examples are provided for \(\Omega\) being a square or an \(L\)-shaped region. Reviewer: Rolf Dieter Grigorieff (Berlin) Cited in 1 ReviewCited in 46 Documents MSC: 65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N15 Error bounds for boundary value problems involving PDEs 35P15 Estimates of eigenvalues in context of PDEs Keywords:second order elliptic eigenvalue problem; conforming and nonconforming finite element method; two-grid discretization; shifted inverse power method; numerical error estimates; numerical examples PDF BibTeX XML Cite \textit{Y. Yang} and \textit{H. Bi}, SIAM J. Numer. Anal. 49, No. 4, 1602--1624 (2011; Zbl 1236.65143) Full Text: DOI