Incremental harmonic balance method for nonlinear flutter of an airfoil with uncertain-but-bounded parameters. (English) Zbl 1236.74071

Summary: The limit cycle oscillation of a two-dimensional airfoil with parameter variability in an incompressible flow is investigated using the incremental harmonic balance (IHB) method. The variable parameters, such as the wind speed, the cubic plunge and pitch stiffness coefficients, are modeled as either bounded uncertain or stochastic parameters. In the solution process of the IHB method, the bounded parameters are considered as an active increment. Taking all values over the considered bounded regions of the active parameters provides us with a series of IHB solutions of limit cycle oscillations of the airfoil. With the aid of the attained solutions, the bounds and some statistical properties of the limit cycle oscillations are determined and compared with Monte Carlo simulation (MCS) results. Numerical examples show that the proposed approach is valid and effective for analyzing strongly nonlinear vibration problems with bounded uncertainties.


74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
34C46 Multifrequency systems of ordinary differential equations
65C05 Monte Carlo methods
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
74H50 Random vibrations in dynamical problems in solid mechanics
Full Text: DOI


[1] Dowell, E.H.; Clark, R.; Cox, D., A modern course in aeroelasticity, (2004), Kluwer Academic Publishers. Dordrecht · Zbl 1078.74001
[2] Lee, B.H.K.; Price, S.J.; Wong, Y.S., Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos, Progress aerosp. sci., 35, 205-344, (1999)
[3] Price, S.F.; Alighanbari, H.; Lee, B.H.K., The aeroelastic response of a two-dimensional airfoil with bilinear and cubic structural nonlinearities, J. fluids struct., 9, 175-193, (1995)
[4] Liu, J.K.; Zhao, L.C., Bifurcation analysis of airfoils in incompressible flow, J. sound vibr., 154, 1, 117-124, (1992) · Zbl 0922.76215
[5] Shahrzad, P.; Mahzoon, M., Limit cycle flutter of airfoils in steady and unsteady flows, J. sound vibr., 256, 2, 213-225, (2002)
[6] Liu, L.P.; Dowell, E.H., Harmonic balance approach for an airfoil with a freeplay control surface, Aiaa j., 43, 4, 802-815, (2005)
[7] Liu, L.P.; Dowell, E.H., The secondary bifurcation of an aeroelastic airfoil motion: effect of high harmonics, Nonlinear dyn., 37, 31-49, (2004) · Zbl 1078.74016
[8] Coller, B.D.; Chamara, P.A., Structural non-linearities and the nature of the classic flutter instability, J. sound vibr., 277, 711-739, (2004) · Zbl 1236.74103
[9] Chen, Y.M.; Liu, J.K., Homotopy analysis method for limit cycle flutter of airfoils, Appl. math. comput., 203, 2, 854-863, (2008) · Zbl 1262.74015
[10] Chen, Y.M.; Liu, J.K., On the limit cycles of aeroelastic systems with quadratic nonlinearities, Struct. eng. mech., 30, 1, 67-76, (2008)
[11] Chen, Y.M.; Liu, J.K., Elliptic harmonic balance method for two degree-of-freedom self-excited oscillators, Commun. nonlinear sci. numer. simulat., 14, 916-922, (2009)
[12] Fang, T.; Leng, X.L.; Song, C.Q., Chebyshev polynomial approximation for dynamical response problems of random structures, J. sound vibr., 266, 198-206, (2003) · Zbl 1236.70045
[13] P.J. Attar, E.H. Dowell, A stochastic analysis of the limit cycle behavior of a nonlinear aeroelastic model using the response surface method. in: AIAA 2005-1986, April, 2005.
[14] D.R. Millman, P.I. King, R.C. Maple, P.S. Beran, Predicting uncertainty propagation in a highly nonlinear system with a stochastic projection method, in: 45th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2004-1613, April, 2004.
[15] Xiu, D.; Kevrekidis, I.G.; Ghanem, R., An equation-free, multiscale approach to uncertainty quantification, Comput. sci. eng., 7, 3, 16-23, (2005)
[16] C.L. Pettit, P.S. Beran, Polynomial chaos expansion applied to airfoil limit cycle oscillations. in: AIAA 2004-1691, April, 2004.
[17] C.L. Pettit, P.S. Beran, Wiener-Haar expansion of airfoil limit cycle oscillations. in: AIAA 2005-1985, April, 2005.
[18] Millman, D.R.; King, P.I.; Beran, P.S., Airfoil pith-and-plunge bifurcation behavior with Fourier chaos expansion, J. aircraft, 42, 376-384, (2005)
[19] Wu, C.L.; Zhang, H.M.; Fang, T., Flutter analysis of an airfoil with bounded random parameters in incompressible flow via Gegenbauer polynomial approximation, Aerosp. sci. tech., 11, 518-526, (2007) · Zbl 1195.74081
[20] Millman, D.R.; King, P.I.; Maple, R.C.; Beran, P.S.; Chilton, L.K., Uncertainty quantification with a B-spline stochastic projection, Aiaa j., 44, 1845-1853, (2006)
[21] Beran, P.S.; Pettit, C.L.; Millman, D.R., Uncertainty quantification of limit-cycle oscillations, J. comput. phys., 217, 217-247, (2006) · Zbl 1147.76552
[22] Elishakoff, I., Probabilistic methods in the theory of structures, (1983), John Wiley & Sons · Zbl 0572.73094
[23] Oberkampf, W.L.; Deland, S.M.; Rutherford, B.M.; Diegert, K.V.; Alvin, K.F., Error and uncertainty in modeling and simulation, Reliab. eng. syst. safety, 75, 333-357, (2002)
[24] Capiez-Lernout, E.; Pellissetti, M.; Pradlwarter, H.; Schueller, G.I.; Soize, C., Data and model uncertainties in complex aerospace engineering systems, J. sound vibr., 295, 923-938, (2006)
[25] Qiu, Z.P.; Ni, Z., An inequality model for solving interval dynamic response of structures with uncertain-but-bounded parameters, Appl. math. model., (2009)
[26] Schultz, T.; Sheplak, M.; Cattafesta, L.N., Application of multivariate uncertainty analysis to frequency response function estimates, J. sound vibr., 205, 116-133, (2007)
[27] Worden, K.; Manson, G.; Lord, T.M.; Friswell, M.I., Some observations on uncertainty propagation through a simple nonlinear system, J. sound vibr., 288, 601-621, (2005)
[28] Witteveen, J.A.S.; Loeven, A.; Sarkar, S.; Bijl, H., Probabilistic collocation for period-1 limit cycle oscillations, J. sound vibr., 311, 421-439, (2008)
[29] Qiu, Z.P.; Ma, L.H.; Wang, X.J., Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty, J. sound vibr., 319, 531-540, (2009)
[30] Singh, B.N.; Bisht, A.K.S.; Pandit, M.K.; Shukla, K.K., Nonlinear free vibration analysis of composite plates with material uncertainties: a Monte Carlo simulation approach, J. sound vibr., 324, 126-138, (2009)
[31] Lau, S.L.; Cheung, Y.K., Amplitude incremental variational principle for nonlinear vibration of elastic systems, ASME J. appl. mech., 48, 959-964, (1981) · Zbl 0468.73066
[32] Cheung, Y.K.; Chen, S.H.; Lau, S.L., Application of the incremental harmonic balance method to cubic non-linearity systems, J. sound vibr., 140, 273-286, (1990)
[33] Raghothama, A.; Narayanan, S., Non-linear dynamics of a two-dimensional airfoil by incremental harmonic balance method, J. sound vibr., 226, 493-517, (1999)
[34] Seydel, R., From equilibrium to chaos, (1988), Elesvier New York · Zbl 0652.34059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.