×

zbMATH — the first resource for mathematics

Superconvergence by \(L^2\)-projection for a stabilized finite volume method for the stationary Navier-Stokes equations. (English) Zbl 1236.76017
Summary: A superconvergence result is established for the stationary Navier-Stokes equations by a stabilized finite volume method and \(L^{2}\)-projection on a coarse mesh. Like other results in the family of \(L^{2}\)-projection methods, the superconvergence presented in this paper is based on some regularity assumption for the Navier-Stokes problem and is applicable to the stabilized finite volume method with quasi-uniform partitions.

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
76M12 Finite volume methods applied to problems in fluid mechanics
65N08 Finite volume methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
PDF BibTeX Cite
Full Text: DOI
References:
[1] Douglas, J.; Dupont, T., Superconvergence for Galerkin methods for the two-point boundary problem via lacal projections, Numer. math., 21, 270-278, (1973) · Zbl 0281.65046
[2] Zlamal, M., Superconvergence and reduced intergration in the finite element method, Math. comp., 32, 663-685, (1978) · Zbl 0448.65068
[3] Wheeler, M.F.; Whiteman, J.R., Superconvergence recovery of gradient on subdomains from piecewise linear finite element approximations, Numer. methods partial differential equations, 3, 65-82, (1987) · Zbl 0706.65107
[4] Douglas, J.; Wang, J., A superconvergence for mixed finite element methods on rectangular domains, Calcolo, 26, 121-134, (1989)
[5] Ewing, R.E.; Lazarov, R.D.; Wang, J., Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. numer. anal., 28, 1015-1029, (1991) · Zbl 0733.65065
[6] Lin, Q.; Yan, N., Analysis and construction of finite element methods with high efficiency, (1996), Hebei University Publishing, (in Chinese)
[7] Li, Z.C., Superconvergence of coupling techniques in combined methods for elliptic equations with singularities, Comput. math. appl., 41, 379-398, (2001) · Zbl 0987.65107
[8] Li, Z.C.; Lu, T.T., Global superconvergence of finite element methods for biharmonic equations and blending surfaces, Comput. math. appl., 44, 413-437, (2002) · Zbl 1057.65072
[9] Wang, J.; Ye, X., A superconvergence finite element scheme for the reissner – mindlin plate by projection methods, Int. J. numer. anal. model., 1, 99-110, (2004) · Zbl 1085.74047
[10] Liu, H.; Yan, N., Global superconvergence for optimal control problems governed by Stokes equations, Int. J. numer. anal. model., 3, 283-302, (2006) · Zbl 1126.49028
[11] Brandts, J.; Chen, Y., Superconvergence of least-squares mixed finite elements, Int. J. numer. anal. model., 3, 303-310, (2006) · Zbl 1096.65108
[12] Wang, J., A superconvergence analysis for finite element solutions by the least-squares surface Fitting on irregular meshes for smooth problems, J. math. study, 33, 229-243, (2000) · Zbl 0987.65108
[13] Wang, J.; Ye, X., Superconvergence of finite element approximations for the Stokes problem by projection methods, SIAM J. numer. anal., 39, 1001-1013, (2001) · Zbl 1002.65118
[14] Wang, X.S.; Ye, X., Superconvergence analysis for the navier – stokes equations, Appl. numer. math., 41, 515-527, (2002) · Zbl 1034.76034
[15] Li, J.; He, Y.N., Superconvergence of discontinuous Galerkin finite element method for the stationary navier – stokes equations, Numer. methods partial differential equations, 23, 421-436, (2007) · Zbl 1107.76046
[16] Li, J.; Wang, J.P.; Ye, X., Superconvergence by \(L^2\)-projections for stabilized finite element methods for the Stokes equations, Int. J. numer. anal. model., 6, 711-723, (2009)
[17] Ye, X., Superconvergence of nonconforming finite element method for the Stokes equations, Numer. methods partial differential equations, 18, 143-154, (2002) · Zbl 1003.65121
[18] Chou, S.H.; Ye, X., Superconvergence of finite volume methods for the second order elliptic problem, Comput. methods appl. mech. engrg., 196, 3706-3712, (2007) · Zbl 1173.65354
[19] Cui, M.; Ye, X., Superconvergence of finite volume methods for the Stokes equations, Numer. methods partial differential equations, 25, 1212-1230, (2009) · Zbl 1170.76037
[20] Cai, Z.; Mandel, J.; McCormick, S., The finite volume element method for diffusion equations on general triangulations, SIAM J. numer. anal., 28, 392-403, (1991) · Zbl 0729.65086
[21] Chen, Z., The control volume finite element methods and their applications to multiphase flow, Netw. heterog. media, 1, 689-706, (2006) · Zbl 1204.76018
[22] Chou, S.H.; Li, Q., Error estimates in \(L^2, H^1\) and \(L^\infty\) in co-volume methods for elliptic and parabolic problems: a unified approach, Math. comp., 69, 103-120, (1999)
[23] Li, R., Generalized difference methods for a nonlinear Dirichlet problem, SIAM J. numer. anal., 24, 77-88, (1987) · Zbl 0626.65091
[24] Bochev, P.; Dohrmann, C.R.; Gunzburger, M.D., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. numer. anal., 44, 82-101, (2006) · Zbl 1145.76015
[25] Li, J.; He, Y.N.; Chen, Z.X., A new stabilized finite element method for the transient navier – stokes equations, Comput. methods appl. mech. eng., 197, 22-35, (2007) · Zbl 1169.76392
[26] Li, J.; He, Y.N., A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. comput. appl. math., 214, 58-65, (2008) · Zbl 1132.35436
[27] Heywood, J.G.; Rannacher, R., Finite-element approximations of the nonstationary navier – stokes problem. part I: regularity of solutions and second-order spatial discretization, SIAM J. numer. anal., 19, 275-311, (1982) · Zbl 0487.76035
[28] Kellogg, R.B.; Osborn, J.E., A regularity result for the Stokes problem in a convex polygon, J. funct. anal., 21, 397-431, (1976) · Zbl 0317.35037
[29] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
[30] Li, J.; Shen, L.H.; Chen, Z.X., Convergence and stability of a stabilized finite volume method for the stationary navier – stokes equations, Bit, 50, 823-842, (2010) · Zbl 1275.76163
[31] He, Y.N.; Wang, A.W., A simplified two-level method for the steady navier – stokes equations, Comput. methods appl. mech. engrg., 197, 1568-1576, (2008) · Zbl 1194.76120
[32] Li, J.; Chen, Z.X., A new stabilized finite volume method for the stationary Stokes equations, Adv. comput. math., 30, 141-152, (2009) · Zbl 1187.65120
[33] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland New York · Zbl 0445.73043
[34] Ye, X., On the relationship between finite volume and finite element methods applied to the Stokes equations, Numer. methods partial differential equations, 5, 440-453, (2001) · Zbl 1017.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.