×

The application of homotopy analysis method to nonlinear equations arising in heat transfer. (English) Zbl 1236.80010

Summary: Here, the homotopy analysis method (HAM), which is a powerful and easy-to-use analytic tool for nonlinear problems and dose not need small parameters in the equations, is compared with the perturbation and numerical and homotopy perturbation method (HPM) in the heat transfer filed. The homotopy analysis method contains the auxiliary parameter \(\hbar\), which provides us with a simple way to adjust and control the convergence region of solution series.

MSC:

80M25 Other numerical methods (thermodynamics) (MSC2010)
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0802.65122
[2] Ayub, M.; Rasheed, A.; Hayat, T., Int. J. Eng. Sci., 41, 2091 (2003) · Zbl 1211.76076
[3] Cole, J. D., Perturbation Methods in Applied Mathematics (1968), Blaisdell: Blaisdell Waltham, MA · Zbl 0162.12602
[4] Ganji, D. D., Phys. Lett. A, 355, 337 (2006) · Zbl 1255.80026
[5] Hayat, T.; Khan, M., Nonlinear Dynam., 42, 395 (2005) · Zbl 1094.76005
[6] Hayat, T.; Khan, M.; Ayub, M., Z. Angew. Math. Phys., 56, 1012 (2005) · Zbl 1097.76007
[7] He, J. H., Appl. Math. Comput., 156, 527 (2004) · Zbl 1062.65074
[8] He, J. H., Int. J. Mod. Phys. B, 20, 1141 (2006) · Zbl 1102.34039
[9] He, J. H., Phys. Lett. A, 350, 87 (2006)
[10] Karmishin, A. V.; Zhukov, A. I.; Kolosov, V. G., Methods of Dynamics Calculation and Testing for Thin-Walled Structures (1990), Mashinostroyenie: Mashinostroyenie Moscow
[11] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992; S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992
[12] Liao, S. J., Int. J. Non-Linear Mech., 34, 759 (1999) · Zbl 1342.74180
[13] Liao, S. J., Beyond Perturbation: Introduction to the Homotopy Analysis Method (2003), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Boca Raton
[14] Liao, S. J., J. Fluid Mech., 488, 189 (2003) · Zbl 1063.76671
[15] Liao, S. J., Appl. Math. Comput., 147, 499 (2004) · Zbl 1086.35005
[16] Liao, S. J., Int. J. Heat Mass Transfer, 48, 2529 (2005) · Zbl 1189.76142
[17] Liao, S. J., Appl. Math. Comput., 169, 1186 (2005) · Zbl 1082.65534
[18] Lyapunov, A. M., General Problem on Stability of Motion (1992), Taylor & Francis: Taylor & Francis London, (English translation) · Zbl 0786.70001
[19] Nayfeh, A. H., Perturbation Methods (2000), Wiley: Wiley New York · Zbl 0375.35005
[20] Sajid, M.; Hayat, T.; Asghar, S., Phys. Lett. A, 355, 18 (2006)
[21] Siddiquia, A. M.; Mahmoodb, R.; Ghorib, Q. K., Phys. Lett. A, 352, 404 (2006) · Zbl 1187.76622
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.