zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The application of homotopy analysis method to nonlinear equations arising in heat transfer. (English) Zbl 1236.80010
Summary: Here, the homotopy analysis method (HAM), which is a powerful and easy-to-use analytic tool for nonlinear problems and dose not need small parameters in the equations, is compared with the perturbation and numerical and homotopy perturbation method (HPM) in the heat transfer filed. The homotopy analysis method contains the auxiliary parameter $\hbar$, which provides us with a simple way to adjust and control the convergence region of solution series.

80M25Other numerical methods (thermodynamics)
80A20Heat and mass transfer, heat flow
Full Text: DOI
[1] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[2] Ayub, M.; Rasheed, A.; Hayat, T.: Int. J. Eng. sci.. 41, 2091 (2003)
[3] Cole, J. D.: Perturbation methods in applied mathematics. (1968) · Zbl 0162.12602
[4] Ganji, D. D.: Phys. lett. A. 355, 337 (2006)
[5] Hayat, T.; Khan, M.: Nonlinear dynam.. 42, 395 (2005)
[6] Hayat, T.; Khan, M.; Ayub, M.: Z. angew. Math. phys.. 56, 1012 (2005)
[7] He, J. H.: Appl. math. Comput.. 156, 527 (2004)
[8] He, J. H.: Int. J. Mod. phys. B. 20, 1141 (2006)
[9] He, J. H.: Phys. lett. A. 350, 87 (2006)
[10] Karmishin, A. V.; Zhukov, A. I.; Kolosov, V. G.: Methods of dynamics calculation and testing for thin-walled structures. (1990)
[11] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992
[12] Liao, S. J.: Int. J. Non-linear mech.. 34, 759 (1999)
[13] Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method. (2003)
[14] Liao, S. J.: J. fluid mech.. 488, 189 (2003)
[15] Liao, S. J.: Appl. math. Comput.. 147, 499 (2004)
[16] Liao, S. J.: Int. J. Heat mass transfer. 48, 2529 (2005)
[17] Liao, S. J.: Appl. math. Comput.. 169, 1186 (2005)
[18] Lyapunov, A. M.: General problem on stability of motion. (1992) · Zbl 0786.70001
[19] Nayfeh, A. H.: Perturbation methods. (2000) · Zbl 0995.35001
[20] Sajid, M.; Hayat, T.; Asghar, S.: Phys. lett. A. 355, 18 (2006)
[21] Siddiquia, A. M.; Mahmoodb, R.; Ghorib, Q. K.: Phys. lett. A. 352, 404 (2006)