×

zbMATH — the first resource for mathematics

Wigner measures on infinite-dimensional spaces and the Bogolyubov equations for quantum systems. (English. Russian original) Zbl 1236.81143
Dokl. Math. 84, No. 1, 571-575 (2011); translation from Dokl. Akad. Nauk 439, No. 5, 600-604 (2011).
From the text: A similar method is applied to derive quantum versions of Bogolyubov-type equations. The Liouville equation is replaced by an equation with respect to functions of a real argument taking values in the space of cylindrical measures on the phase space, which is a generalization of the evolution equation for Wigner functions.

MSC:
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. V. Kozlov and O. G. Smolyanov, Dokl. Math. 81, 476–480 (2010). · Zbl 1210.37046
[2] V. V. Kozlov and O. G. Smolyanov, in Quantum Bio-Informatics IV (Wold Sci., Singapore, 2011), pp. 321–337.
[3] H. Poincaré, J. Phys. Théor. Appl. Sér. 5 4, 369–403 (1906).
[4] N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics (Moscow, 1946) [in Russian].
[5] E. Wigner, Phys. Rev. 40, 749 (1932). · Zbl 0004.38201
[6] J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99–124 (1949).
[7] G. B. Folland, Harmonic Analysis in Phase Space (Princeton Univ. Press, Princeton, 1989). · Zbl 0682.43001
[8] Y. S. Kim and M. E. Noz, Phase-Space Picture of Quantum Mechanics: Group Theoretical Approach (World Sci., Singapore, 1991).
[9] R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975; Moscow, Mir, 1978). · Zbl 0984.82500
[10] V. V. Kozlov, Gibbs and Poincaré Heat Equilibrium (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2002) [in Russian].
[11] V. V. Kozlov, Reg. Chaotic Dyn., No. 1, 23–34 (2004).
[12] V. V. Kozlov and O. G. Smolyanov, Teor. Veroyatn. Ee Primen. 51(1), 1–13 (2006).
[13] N. Bourbaki, Eléments de Mathématique, Book 6: Intégration (Hermann, Paris, 1959, 1963; Nauka, Moscow, 1970; Springer-Verlag, Berlin, 2007).
[14] O. G. Smolyanov and H. von Weizsaecker, C. R. Acad. Sci. Paris. Ser. 1 321, 103–108 (1995).
[15] O. G. Smolyanov and E. von Weizsaecker, Inf. Dimens. Anal. Quantum Probab. Relat. Top. 2(1), 51–78 (1999). · Zbl 0936.60052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.